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ABSTRACT
Backscatter communication offers an ultra-low power alter-
native to active radios in urban sensing deployments — com-
munication is powered by a reader, thereby making it vir-
tually “free”. While backscatter communication has largely
been used for extremely small amounts of data transfer (e.g.
a 12 byte EPC identifier from an RFID tag), sensors need
to use backscatter for continuous and high-volume sensor
data transfer. To address this need, we describe a novel link
layer that exploits unique characteristics of backscatter com-
munication to optimize throughput. Our system offers sev-
eral optimizations including 1) understanding of multi-path
self-interference characteristics and link metrics that cap-
ture these characteristics, 2) design of novel mobility-aware
probing techniques that use backscatter link signatures to
determine when to probe the channel, 3) bitrate selection
algorithms that use link metrics to determine the optimal
bitrate, and 4) channel selection mechanism that optimize
throughput while remaining compliant within FCC regula-
tions. Our results show upto 3× increase in goodput over
other mechanisms across a wide range of channel conditions,
scales, and mobility scenarios.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication

General Terms
Design, Experiment, Measurement, Performance
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Backscatter communication, Mobility detection, Rate adap-
tation, Channel switching
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1. INTRODUCTION
An emerging class of applications require small form-factor,

ultra-low power sensors that are ubiquitously deployed in
ways presently difficult to achieve with conventional wire-
less sensor technologies. These devices may be deployed in
areas where small form-factor is critical (e.g. on-body sen-
sors for gesture and activity recognition), maintenance is
difficult or impossible (e.g. embedded monitoring of bridges
and planes), or on a host of small everyday objects (Internet
of Things).

An acute problem for this class of sensor devices is operat-
ing under extremely low energy budgets. The sizes of batter-
ies or capacitors have to be tiny, necessitating new designs
that can operate at orders of magnitude lower power than
typical mote-class sensor platforms. While micro-controllers
have become increasingly efficient in terms of their active
and sleep-mode power consumption, active radios such as
802.15.4 still consume too much power. There is therefore a
dire need for an ultra-low power communication mechanism
for this class of sensors.

One paradigm that promises to dramatically reduce en-
ergy cost is backscatter communication. A backscatter base-
station provides a carrier wave to the sensor node, which can
decode these transmissions using a simple analog compara-
tor circuit. To transmit data, a sensor toggles the state of
a transistor to detune its antenna and “reflects” the carrier
wave back to the reader with its own information bits. Since
a sensor does not need to actively transmit a radio signal,
this can lead to extremely low-power communication. In
addition, backscatter requires low-complexity circuits which
can be implemented at low-cost. Despite these benefits,
widespread use of backscatter communication for sensors has
been stymied by two drawbacks: a) it is restricted to short-
range, single-hop communication, and b) RFID readers are
bulky and difficult to deploy in a dense manner.

Recent developments, however, have mitigated these draw-
backs and renewed the case for wider use of backscatter
communication on sensors. The first development is dra-
matic increases in communication range by enabling tags
to take advantage of alternate energy sources, for exam-
ple tiny solar panels [15, 5]. The second development is
miniaturization in RFID reader hardware leading to small
portable readers that can be attached to a mobile phone
[2]. Thus, backscatter communication offers a considerably
more energy-efficient and increasingly practical alternative
to active radio circuits on existing sensor systems.

Despite the possibilities, we have limited understanding
of how a backscatter link layer should be optimized for data



transfer from sensor devices. Our focus in this work is on
two central elements in such a link layer — bit-rate adap-
tation and channel selection. While these topics have been
widely studied in systems that employ active radios (e.g.
802.11 [9, 21, 23, 27, 28] and 802.15.4 [24]), the applicability
of prior results to our problem is limited. Unlike a conven-
tional active radio link, a backscatter link comprises both
the forward link from reader to sensor and the backward
link from the sensor to reader, since the sensor is essentially
“reflecting” the carrier wave from the reader while modu-
lating with data. This difference results in different path
loss for the forward vs backward link, and unique multipath
self-interference behavior. In addition, the highly asymmet-
ric hardware capabilities of the reader and the sensor tag
imply that modulation and coding schemes for the forward
and reverse link are very different.

In this paper, we explore the design of a high-throughput
link layer for sensors that use backscatter communication.
Our work provides novel insights into self-interference in
backscatter communication and shows that a combination
of RSSI and packetloss metrics are required to capture link
characteristics. We use these metrics to design a novel link
layer with three fundamental contributions. First, we de-
sign a mobility-aware link layer that reduces channel probing
overhead by comparing link signatures over time to detect
sensor mobility. Second, we present a classifier that uses
RSSI and packetloss information to select the optimal bi-
trate for data transfer. Third, we design channel selection
mechanism that optimizes the use of channels for commu-
nication while remaining within FCC specifications. Our
results show that:

• We achieve less than 10% false positive rate and less
than 1% false negative rate for detecting sensor tag
mobility across a range of bitrates.

• Our bitrate classifier selects the optimal bitrate with
over 80% accuracy under most conditions, and achieves
over 88% of the optimal goodput even under heavy
multipath scenarios.

• We show that channel selection and switching improve
goodput by over 2× in comparison with default schemes
used by readers.

• BLINK scales well to large numbers of static and mo-
bile tags. In a deployment with 20 static tags, BLINK
is 1.6× better than the default scheme used by Impinj
readers (AutoSet) and 1.3× better than a backscatter-
optimized version of SampleRate. In a deployment
with 10 mobile tags, BLINK is 2.4× better than Au-
toSet and 2× better than SampleRate.

2. BACKGROUND
This section provides an overview of the physical layer

defined by EPC Gen 2, a dominant standard for backscatter
based communication. Our focus is on mechanisms that
are applicable to commercial readers, since they are readily
available and in widespread use.

2.1 RF Harvesting
Backscatter communication is designed to both provide

power to a sensor tag as well as to enable communication.
As shown in Figure 1, the RFID reader provides a carrier
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Figure 1: Backscatter signaling at PHY [3]

wave, which can be rectified by the sensor to produce DC
voltage. This voltage is boosted to an appropriate level by
a charge pump at the sensor, and accumulated in a small
storage capacitor until the voltage reaches an appropriate
threshold before any computation (or sensing) can begin.
Once voltage is sufficient to power the device, it can begin
to receive and transmit data, both of which are done by
modulating the same carrier wave. The RF harvester at the
sensor includes an analog comparator circuit that can decode
reader transmissions from the reader. To transmit data, a
sensor toggles the state of a transistor to detune its antenna
and reflect the carrier wave back to the reader with its own
information bits. The Intel WISP [6] and UMass Moo [1]
are examples of sensor platforms that rely on backscatter
communication.

2.2 Forward vs Backward link
The forward and backward links in backscatter communi-

cation differ in several ways. First, the path loss is very dif-
ferent for the two links. The signal to noise ratio (SNR) for
typical backscatter communication decays with the square
of distance for the forward link and to the fourth power
of distance for the backscatter link. Second, the encoding
schemes for the links are different — reader to sensor com-
munications use pulse-interval encoding (PIE), which allows
easy decoding, whereas sensor to reader communication uses
more complex encodings (FM0, Miller2, Miller4, Miller8).
Third, the antenna sensitivity at the sensor and reader are
vastly different. A typical RFID reader (e.g. Impinj [4])
uses a mono-static antenna for sending and receiving data,
which has a sensitivity of -80 dBm. In contrast, an RFID-
scale sensor (e.g. the Intel WISP [6]) uses a simple dipole
antenna for data transfer, which is significantly less sensi-
tive than the reader antenna. These factors contribute to
different link qualities in the two directions. The forward
link uses weaker encoding and is received by a less sensi-
tive antenna, but has lower path loss. The backward link
uses stronger encoding and is received by a highly sensitive
antenna, but has much higher path loss.

Our focus in this paper is on optimizing the backward link
from the sensor tag to the reader. We make this decision for
two reasons: 1) the forward link offers almost no choices -
only one encoding scheme (PIE) is supported and no baud
rate option is clearly proposed, whereas sensor to reader



communication uses more complex encodings (FM0, Miller2,
Miller4, Miller8) and several baud rates (32 kbps to 640
kbps) since the reader has more computational resources
for decoding, and 2) the backward link is crucial since it
has greater path loss and unique multipath self-interference
behavior, and is therefore very sensitive to sensor placement
relative to the reader (discussed in greater detail in §4.1).

2.3 Backscatter Channels
RFID readers use frequency hopping to avoid interference

across readers when reading sensors in the same area. A
typical UHF reader hops between 50 channels in the 902MHz
∼ 928MHz ISM band. FCC regulations specify that a reader
can have a maximum channel dwell time of 0.4 seconds in
any ten second period to reduce interference in a channel
[11]. Commercial reader implementations address this by
spending an equal amount of time in each of the 50 channels
(0.2 secs) and hopping in sequence from the first to last
channel. As we show in §4.4, this is inefficient, and more
intelligent choice of channels while remaining within FCC
specifications can improve throughput.

3. SYSTEM OVERVIEW
Figure 2 shows the BLINK link layer architecture. At the

core of BLINK are link metrics that capture path loss and
multipath fading characteristics of a backscatter link. We
show that backscatter communication has unique character-
istics: RSSI is a better measure of path loss and packet loss
rates are a better measure of multipath fading. These met-
rics are used by a mobility detector that detects changes in
the mobility patterns of a sensor tag and triggers bitrate
and channel adaptation. The central idea of the mobility
detector is to compare link signatures over time to identify
whether a sensor has moved from one location to another,
or whether it is in continuous motion.

When mobility is detected, the rate adaptation module
needs to choose a new bitrate that best suits the channel
characteristics. This is done by using a classifier that maps
from the link metrics (RSSI and packetloss vectors) to the
appropriate bitrate. An additional challenge in rate adap-
tation is that the link metrics need to be obtained at the
lowest bitrate to ensure that sensors are not missed, but ob-
taining these metrics across 50 channels is exceedingly slow
and reduces goodput. The rate adaptation module there-
fore uses a fast probe technique that exploits loss patterns
on backscatter channels, as well as knowledge of the feature
needed for the classifier to optimize probing duration.

Mobility also triggers channel selection; this module is
responsible for selecting channels that maximize throughput.
We take advantage of flexibility in FCC regulations that
allow the use of fewer than 50 channels while ensuring per-
channel dwell times are under 0.4s. This module measures
channel characteristics such as the burstiness and sharpness
of transitions between good to bad channels, and uses this
information to decide whether to select the best channels a
priori, or whether to dynamically switch between them to
take advantage of bursts of good throughput.

4. BLINK DESIGN
This section describes the key design elements of BLINK.

We first present the link metrics that are the foundation
of our link layer, and then discuss how each module in our
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Figure 2: System overview.

system takes advantage of the link metric to detect mobility,
select optimal bitrate, and select the best channels to use.

4.1 Backscatter Link Metrics
Commercial RFID readers expose two link metrics: a) the

RSSI value for each query response from a sensor tag, and b)
the aggregate per-channel loss rate for each dwell time inter-
val. In a traditional wireless networks that use active radios
such as 802.11 or 802.15.4, RSSI and loss rate are strongly
correlated. As a consequence, most link-layer metrics rely
on either fine-grained RSSI information or coarse-grained
packet loss rates (e.g. [21, 23]). However, a unique fea-
ture of backscatter communication is that packet loss and
RSSI provide complementary information about path-loss
and self-interference, and therefore need to be used in con-
junction. To understand why, let us look at the nature of
multipath interference in backscatter systems.

Backscatter multipath: Multi-path phenomena is often
caused by the transmitted signal being reflected by objects
like walls and buildings. As a result, the receiver will de-
tect multiple copies of the same signal which traverse dif-
ferent paths. The summation of these signals distorts the
original shape of transmitted signal resulting in pockets of
constructive interference where RSSI is high and destructive
interference where RSSI is low. In addition, the summation
of signals is sensitive to frequency and leads to frequency
selective signal distortion.

Multipath effects are a bit different for backscatter com-
munication. Consider the case shown in Figure 3 where the
reader sends out a signal S1 and the sensor tag backscatters
with signal S2 on the same carrier wave. In addition to the
backscattered signal from the sensor, a wall-reflected multi-

path signal, S1
′
, is also received at the reader. Thus, the

backscatter signal received by the reader is the summation of

two signals: wall-reflected multipath signal S1
′

and sensor-

backscattered signal S2. S1
′

could be seen as carrier wave
modulated by information from the reader and S2 is carrier
wave modulated by information from the sensor. As a re-
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Figure 3: Multipath self-interference when tag is
placed at the edge of reader beamformer direction.

sult, even if constructive interference happens between the
two signals , it may not be decoded correctly at the reader

since S1
′

and S2 have different information bits. In other
words, RSSI may be high due to constructive interference
but packet loss would be high as well.

To contrast against a traditional communication scenario,
assume that the sensor tag in Figure 3 is equipped with
an active radio. In this case, its transmission signal, S2,
to the base-station might interfere with a multipath ver-

sion of the signal S2
′

caused by reflection from the wall.
Unlike backscatter multipath, copies of the same signal (S2

and S2
′
) interfere with each other, and techniques such as

equalization can handle the offset between the signals.
This phenomena is exacerbated by RFID placement rel-

ative to the reader’s antenna beamformer. When a sensor
tag is placed within the beamformer direction of the reader
antenna, then the signal strength of the backscattered signal
(S2) is typically high enough that it can be decoded despite
multipath effects. However, if the sensor is placed outside
the primary beamformer direction, then the signal that it
receives is weak and the backscattered signal (S2) may not

be strong enough to overcome the interference from S1
′
.

Empirical evidence: To provide empirical evidence of
the above behavior, we use a passive tag to measure the
packet loss rate on each channel for a tag placed at the
edge of the antenna beamformer. Figure 4 shows RSSI and
corresponding packet loss rate across the 50 channels when
the tag is placed at different locations. When the tag is 1
meter from reader, it is within the beam of the reader an-
tenna. As a result, the reader obtains high RSSI and low
loss rate. Moving the tag to 1.5m results in a sharp im-
provement in RSSI, but packet losses become severe. This
point clearly shows the effect of multi-path self interference
— RSSI is high, which would suggest excellent channel qual-
ity, but packet loss rate is high as well due to multipath. The
multipath effect reduces when the tag moves a bit more to
2m. Beyond this point, we do not observe self-interference
and link quality degrades predictably with distance.

Implication: Why does this distinction between RSSI
and packet loss matter? The result shows that we need to
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Figure 4: Empirical results about multipath self-
interference.

consider both RSSI and packet loss to optimize communi-
cation on backscatter channels. Together, they capture the
effect of path loss and multipath self-interference.

4.2 Mobility Detection
The mobility detection module generates triggers when-

ever it believes that the sensor tag’s location or mobility
pattern has changed. Detecting the mobility pattern of a
sensor is important for a reader to decide how to interact
with the sensor. When a sensor has moved, a reader may
need to change the encoding, baudrate, or channels to max-
imize throughput [22]. In this section, we introduce a zero-
overhead approach to determine mobility behavior of sensor
tags.

At the core of mobility detection is the notion of a backscatter
link signature. The link signature is defined as the distance
between the RSSI vectors and lossrate vectors across suc-
cessive scans of all the channels. Here, the RSSI vector
comprises a vector of the RSSI values on each of the N
channels that an RFID reader uses to communicate with a
sensor, and the lossrate vector is the loss rate across the
same channels. We denote the RSSI vector for location
A to be (a1, a2, ..., aN ) and the packet loss vector to be
(a∗1, a

∗
2, ..., a

∗
N )

We use a simple euclidean distance metric to measure the
distance between the vectors for successive scans. The dis-
tance d between successive RSSI vectors, (a1, a2, ..., aN ) and
(b1, b2, ..., bN ) is defined as:

d =

√∑N
i=1(ai − bi)2

N

The distance between two packet loss vectors d∗ can also
be calculated in the above manner. Given the two distances,
the mobility detector identifies if a sensor is static or mobile
as follows:

Output =

{
Static if d < dT & d∗ < d∗T
Mobile if d ≥ dT ‖ d∗ ≥ d∗T

where dT and d∗T are empirically measured thresholds (see
§5). The rationale for generating mobility triggers when
either distance was larger than the threshold was because
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we were willing to sacrifice a few false alarms, but wanted
to ensure that mobility scenarios were not missed.

Note that changes in the environment such as movement
of metal objects in the vicinity of the sensor could be mis-
interpreted by the mobility detector as a change in location
of the sensor since the link signature might have changed.
These triggers are, in fact, useful since environmental changes
can impact link characteristics and therefore require adjust-
ing communication parameters between the reader and the
sensor.

Empirical evidence: To provide an empirical compari-
son of link signatures for stationary and mobile sensor tags,
we use a passive tag to measure link signatures in two cases.
The first is when the tag is stationary and placed at two
spots that are at different distances from the reader. We
use an Impinj reader and the fastest bitrate, FM0/640, for
capturing link signatures. The second case is when a tag
is mobile at different speeds. To ensure repeatable mobil-
ity experiments, we use a LEGO toy train on an oval track
which was mounted with a tag. The train was run at dif-
ferent speeds to measure the link signatures under mobility.
In each of these experiments, we get a sequence of link sig-
natures, one for each consecutive pair of reader scans.

The distance between RSSI vectors are shown in Figure 5
and the distance between packet loss vectors are shown in
Figure 6. The graphs clearly show that it is straightforward
to distinguish between the mobile and stationary case since
they have vastly different signatures. Even while consider-
ing the cases within one of these groups, there is sufficient
difference in the signature that we can detect changes in lo-
cation, or mobility speeds. In §5, we provide a more in-depth
breakdown to show that this is indeed possible.

4.3 Rate adaptation
The rate adaptation module exploits the link metrics (RSSI

and packet loss vectors) that it obtains from the probes to
determine the bitrate that would achieve highest goodput
for communication with a reader. As shown in Table 1, an
EPC Gen 2 reader specifies six bitrates that are a result of
different encoding/baudrate combinations. Our goal is to
select the best of these options.
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Bitrate (symbol/s) Throughput (kbps)
FM0/640 640
FM0/160 160

Miller4/640 160
Miller4/256 64

FM0/40 40
Miller8/256 32

Table 1: Ranked encoding and baud rate combina-
tions based on throughput.

4.3.1 RSSI/Packet loss→ Encoding/Baudrate
RSSI and packet loss rate are two dominant factors that

affect the performance of backscatter system. This intu-
ition for how these link metrics impact bitrate is shown in
the RSSI-lossrate map in Figure 7. Consider the first row
where RSSI goes from high to low and packet loss is low.
As we showed earlier, RSSI in backscatter communication
is primarily impacted by pathloss and not multipath effects.
Thus, as RSSI reduces, the maximum throughput of the
channel reduces and a bitrate that leads to a lower through-
out should be chosen. The optimal choice of bitrate follows
the order shown in Table 1 i.e. order of reducing throughput.

Now lets look at the case where packet loss goes from good
to bad and RSSI is fixed at high. We know that packet loss
rate shows the effect of multipath self-interference. There-
fore, for a fixed RSSI value, increase in loss rate should lead
to a choice of more advanced encoding schemes. Using a
more advanced encoding would mean that more symbols are
employed to transmit the same information, which in turn
would mean more tolerance for signal distortion in the time
domain. This would reduce the negative impact of multipath
interference. This is shown in the first column in Figure 7 —
loss rates increase, the choice of encoding shifts from FM0,
which employs one high-low pulse to encode 1 bit of infor-
mation, to Miller-4, which uses four high-low combinations,
and finally Miller-8, which uses eight.
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lower throughput. When packet loss rate increases,
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overcome interference.

4.3.2 Classifier design
The RSSI/packet loss to bitrate map shown in Figure 7

provides the intuition for the operation of a classifier, but
doesn’t provide the boundaries between classes. We learn
these boundaries using training data collected from various
indoor settings, and use a classifier to map from the current
link metrics to the appropriate bitrate.

The classifier uses two features, the sorted list of RSSI
across the channels and the sorted list of packet loss across
the channels. We use the sorted list since we find that the
shape of RSSI and packet loss is a better indicator of the op-
timal bitrate than using specific channel information. Given
the RSSI and loss vectors, the classifier chooses the closest
bitrate cluster among those shown in Figure 7. In other
words, it chooses cluster i using the following expression:

∀i ∈ {A,B, ..., I} i : min(|Ri −R|l2 + |Li − L|l2)

where R and L are the current sorted RSSI vector and loss
rate vectors, and Ri and Li are the empirically-determined
centroids of the cluster i from Figure 7.

4.3.3 Mobility-aware channel probing
An important question when designing a rate adaptation

algorithm is the cost of probing in-order to obtain the link
metrics across different channels. Unlike the mobility de-
tector, which can passively monitor the RSSI and loss rate
metrics at any bitrate that has been currently chosen by
upper layers, the channel probe needs to use the simplest
encoding and slowest baud rate. This is because of two rea-
sons: 1) using a complex encoding and fast baudrate can
mask channel errors, making it harder to estimate the chan-
nel accurately, and 2) higher bitrates reduce communication
range, and can lead to misses of corner and far-away sensor
tags. To give an estimate of the time taken for a channel
probe, consider an Impinj reader at the slow FM0/40 set-
ting. By default, the reader spends 100ms in each channel
to transmit 7 queries. Since there are 50 channels, the to-
tal time for a channel probe is 5 seconds. This is clearly a
large number, and results in significant loss of goodput and
responsiveness. This section presents a fast probing mecha-
nism that uses two key ideas: a) one-query channel probing,
and b) random channel probing.
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One-Query Channel Probing: How many queries in
each channel are required to estimate its loss rate? The
more queries it takes, the more expensive a channel probe.
The key idea in this approach is that one query per channel
may be enough since backscatter links have a sharp phase
transition behavior (from “good” to “bad” channel quality).

To validate our approach, we look at the loss rate pat-
terns across channels on the Impinj reader. Figure 8 shows
the packet reception rates sorted from the highest to lowest
across the 50 channels. We observe that there is a fairly
sharp transition and that channels tend to be either consis-
tently good (zero loss) or consistently bad (over 90% loss).
Only 10% of the channels have loss rates between 20% and
80%. This behavior is typical of wireless channels — stud-
ies have shown that the transition between low to high loss
rates is sharp across distance [31], and we observe that this
is true across frequency as well.

The sharp transition makes probing more efficient — a
successful packet on a channel is likely be followed by several
continuous successful packets, and vice-versa. As result, we
can use a single query probe in each channel to estimate
channel loss rate. This simple change reduces the overall
cost of probing by 7× from 5 seconds to 0.7 seconds.

Random channel probe: A single query per channel
reduces probe time but 0.7 seconds is still a long duration,
so we look at reducing this even further. This approach
exploits the fact that the features used by the classifier are
the shape of the RSSI and loss rate vectors. Thus, it is not
essential to probe all the 50 channels, only to probe as many
channels as are needed to accurately estimate the RSSI and
loss vector shape. We exploit this idea to perform a random
sampling of a subset of the 50 channels (in our case, 10),
which reduces the channel probe time by another 5×.

4.4 Channel selection/switching module
The RFID reader hops among 50 channels in the 902MHz ∼

928MHz range for communicating with sensor tags. While
FCC regulations prevent the reader from dwelling on a single
channel for too long, there is some flexibility in how chan-
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diate links. Most links are highly bursty (β > 0.8)
making the case for a fast switching algorithm

nels are chosen. FCC allows 0.4s channel usage within 10s,
therefore, the minimal number of channels can be used is
25 rather than 50. When 25 channels are chosen, an RFID
reader can stay on each channel for the maximum-allowed
0.4s duration.

Our channel selection module takes advantage of two char-
acteristics of backscatter channels. The first is the sharp
transition between “good” and “bad” channels as shown in
Figure 8. Since a large number of channels tend to be con-
sistently good or bad, a simple channel selection approach
would be to select only the 25 channels that have least packet
loss rate, and dwell in each for the maximum allowed dura-
tion, 0.4s.

The second characteristic of channels that we take advan-
tage of is burstiness. Wireless channels are known to exhibit
bursty loss patterns [24], and this behavior impacts perfor-
mance of wireless protocols [7]. Channel burstiness has been
shown to be mainly caused by RSSI and interference, but
can also result from hardware or protocol choices, for ex-
ample, an RFID reader might scan the field by changing
beamformer orientation, resulting in bursty loss characteris-
tics. Figure 9 plots the β metric defined in [24] for channels
where we observe intermediate loss rates (i.e. neither 100%
nor 0%) across several placements, where β = 1 means that
link is bursty while β = 0 tells us that independent packet
loss is observed. We clearly see that channels with interme-
diate loss rates tend to be bursty, with success and losses
occurring in clusters.

The bursty nature of channels presents an alternate ap-
proach to selecting channels. Instead of choosing the top 25
channels, we can use fast switching to switch across chan-
nels. If a query transmission in a channel fails, the reader
can immediately switch to another next channel. This mech-
anism also helps us deal with occasional loss bursts that we
observe due to external interference, and lets us take advan-
tage of intermediate links during bursts of good activity. To
ensure that we meet FCC regulations, we keep a counter on
the amount of time spent per channel and mark the channel
as “used” when it completes the 0.4s dwell time quota.

The transition characteristics and burstiness can depend
on the deployment, external interference, and also on the

choice of reader hardware. To handle such variability, we use
an online approach to measure the sharpness of transitions
(fraction of intermediate channels) and the extent of bursti-
ness (beta value). If the channel is not sufficiently bursty,
we pick the top 25 channels but if there is high burstiness
and sharp transitions, we use the fast switching approach.

5. IMPLEMENTATION
In this section, we describe key implementation details

that are not covered in previous sections. Our implemen-
tation is entirely done on the reader-side and requires no
modifications to the tags.

Gen 2 Reader: Our mobility-aware bitrate adaptation
and channel selection protocol is designed to operate on com-
mercial readers that support the EPC Gen 2 protocol. How-
ever, despite being compliant with EPC Gen 2, commercial
readers often do not expose all the parameters that we need
to tune bitrate and channels. On the Impinj reader, we ex-
perienced two limitations: a) changing the bitrate was only
possible at the beginning of a round, and it took 3̃0ms to
finish the configuration, which sacrificed some goodput, and
b) the reader does not expose hooks that would allow us
to select specific channels or change the order of switching
between channels. To evaluate aspects of our link layer such
as channel selection and switching that are not possible to
implement on the Impinj reader, we use trace driven simu-
lations using traces captured by a commercial reader.

USRP Reader: One option that we considered during
our implementation is the use of a USRP software radio
reader developed by Buettner et al [13] to evaluate our link
layer. Clearly, the USRP reader gives us much greater flex-
ibility in terms of evaluating our techniques, but, it also
has several hardware limitations that make it hard to fully
evaluate BLINK. For example, the USRP has a maximum
range of 2.5 meters, making it difficult to observe the mul-
tipath interference behavior. In addition, compared to the
commercial reader, the achievable goodput with a sensor tag
was lower, transitions between good and bad channels were
much less sharp, and burstiness was less evident. To avoid
hardware artifacts from influencing our results, we use the
commercial Impinj reader for almost all our experiments,
and sparingly use the USRP reader in cases where the com-
mercial reader does not expose necessary hooks.

Baseline: We compare BLINK against two baseline schemes:
a) the default Impinj reader configuration, called “AutoSet”,
and b) a backscatter-optimized version of SampleRate [9], a
widely used WiFi-based rate adaptation algorithm. AutoSet
is a rate adaptation algorithm used by default on the Impinj
Speedway RFID reader [12]. Although six bit rate config-
urations are available on the Impinj reader, AutoSet only
utilizes three of these — FM0/320 kbps, Miller4/68 kbps,
and Miller8/20 kbps. Among these, the Impinj reader uses
Miller4/68 when the tag has good connectivity to the reader
(close range), and FM0/320 when the tag has bad connec-
tivity (long range). Miller8/20 kbps is used for the very last
query to pick up any stragglers that have very poor connec-
tivity to the reader.

We also compare BLINK with SampleRate [9] a commonly
used rate adaptation algorithm for WiFi communication.
SampleRate maintains a ranked list of bit-rates, based on
the average per-packet transmission times observed at each
rate. The highest rate on this list is used to transmit data,



except every tenth data packet, which is transmitted at one
of the other bit-rates and used as a channel probe. Sam-
pleRate stops using a bit rate if it experiences four successive
packet losses.

A direct implementation of SampleRate on the Impinj
reader turned out to be inefficient since the Impinj reader in-
curs significant overhead for switching across bit-rates. For
example, a single query packet at FM0/640 takes about 6ms
whereas switching bit-rates incurs a latency of 30ms. As a
result, SampleRate with default parameters performs poorly
and can only achieve around 10 reads/s goodput even at
close ranges. We therefore optimized SampleRate parame-
ters, and found that it performs best when probes are done
for 0.5 secs after every 5 secs of transmission at the best rate.
We use these parameters for SampleRate in our evaluation.

Thresholds for link signatures: Our mobility detec-
tion protocol uses two distance thresholds, dT and d∗T , to
determine if a sensor tag is mobile. We now describe how
we set these thresholds. Figure 10(a) shows the link signa-
tures of a sensor tag in two cases: a) a stationary tag placed
at several different locations in a room, and b) a mobile tag
that is placed on a toy train moving along a oval train track
at different speeds.

First, we look at the distances for the static case (tag at
a single location) vs the mobile case. Figure 10(a) shows
a significant difference between the static and mobile cases,
and the choice of thresholds (dT = 0.3 and d∗T = 0.15) is rel-
atively straightforward. Second, we peer more deeply into
the static cases to see whether we can distinguish between
a tag placed at one location vs another. Figure 10(b) shows
the RSSI and packet loss distances between one of the loca-
tions (referred to as A) and several other locations where the
tag was placed. Again, its clear that there is a substantial
difference across locations, and the same threshold that we
used for the mobile case works in this case as well.

Note that by using the same threshold in the two cases, we
are not distinguishing between a tag that has moved to an-
other location vs a tag that is in continuous motion. While
a simple extension of looking at a window of distances could
address this issue, distinguishing the cases is not important
for us since we only care about generating appropriate trig-
gers for rate adaptation and channel selection.

6. EVALUATION
In this section, we evaluate the implementation of our

link layer using commercial Impinj readers and passive Alien
RFID tags. The evaluation consists of four parts: 1) bench-
marking the accuracy of our mobility detection algorithm,
2) validating the link metrics to bitrate map, and evaluating
the benefit of our classifier-based bitrate selection algorithm,
3) demonstrating the goodput benefit of using channel se-
lection/switching, and 4) evaluating the overall performance
of our high throughput backscatter link layer.

6.1 Mobility detection
The mobility detection module enables a reader to be

aware of tag mobility patterns. In this section, we evaluate
our mobility detection algorithm in two steps: 1) we bench-
mark accuracy when we use RSSI and packet loss distance
exclusively, and a combination of both to detect mobility,
and 2) we compare accuracy when we detect mobility under
different choices of bitrate (since a reader can be communi-
cating with tags at different bitrates).

RSSI LossRate RSSI+LossRate
False positive 1.01% 8.04% 9.05%
False negative 5.63% 3.03% 0.87%

Table 2: False positive/negative rate when different
channel features are utilized. FM0/640 is used to
obtain link signature.

False positive False negative
FM0/160 0% 1.67%

Miller4/640 4.08% 10%
Miller4/256 0% 2.38%
Miller8/256 0% 0%

FM0/40 10% 3.92%

Table 3: False positive/negative rate when different
bitrates are used to obtain link signature.

Detection accuracy under different link metrics: To
evaluate mobility detection accuracy, we attach an RFID tag
to a toy train that moves along a 1m × 2.5m oval track. The
train follows a stop and move pattern; it moves along the
oval track for two mins, stops for three mins, and follows
this pattern eight times.

We evaluate the accuracy of mobility detection by mea-
suring the false positive and false negative rate, where the
null hypothesis is defined as the tag not being mobile. Given
this hypothesis, the false positive rate can be defined as the
ratio of being notified mobile when tag is actually station-
ary, and false negative rate is the ratio of being identified as
stationary when tag is in fact mobile.

Table 2 shows that by combining RSSI and lossrate fea-
tures, we can reduce false negatives to under 1%, which is
3× lower than the rate when only loss rate were used, and
5× lower than the rate if only RSSI were used. We lose
a bit on false positives since when either RSSI or lossrate
distances suggest mobility, we consider the sensor to have
moved. This causes more false alarms but our goal was to
ensure that actual mobility scenarios were not missed, which
is shown to be the case.

Detection accuracy under different bitrates: Since
the reader could be operating at different bitrates at different
times, one question is how the accuracy of mobility detection
is impacted by bitrate. To understand this, we replicate the
above experiment, but do this across all bitrates. To reduce
the time to run the trace, we use two stops for each. We then
measure the false positive/negative rate at different bitrates.

The results are shown in Table 3. We observe that both
false positive and negative rates are lower than 10% for all
other five bitrates. The results show that no matter which
bitrate is selected for obtaining the link signature, our algo-
rithm can achieve similar mobility detection accuracy.

6.2 Rate adaptation
We now turn to the rate adaptation algorithm, which uses

a classifier to select the optimal bitrate. We evaluate our rate
adaptation algorithm in four steps: 1) we verify the correct-
ness of link metrics to bitrate map, 2) we benchmark the
accuracy of the classifier in choosing the best bitrate when
full channel probing is done, 3) we evaluate the accuracy
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Figure 10: Link signature of static and mobile tag.

of the classifier when fast probing is done, and 4) we com-
pare the goodput achieved by the rate adaptation algorithm
against the optimal goodput as well as the one achieved by
fast probing.

Correctness of link metrics to bitrate map: We now
provide micro-benchmarks that validate the link metrics to
bitrate map that we presented in §4.3. We look at two cases
— the tag is placed within the beamformer direction, and
the tag is placed at the edge of the beamformer direction
(i.e. placed close to reader but far from the beamformer
direction). In each case, we look at how the optimal bitrate
as well as the second-based bitrate changes as the tag is
moved away from the reader.

Figure 11(a) shows the results for the case when the tag
is placed within the beamformer direction. Multipath self-
interference is less likely in this setting, and therefore the
optimal bitrate follows a more predictable pattern. As the
tag moves away from the reader, the optimal bitrate goes
from Block A to B to D, roughly following the order in the
lowest row of the map in Figure 7.

Figure 11(b) shows the case when the tag is placed at the
edge of the beamformer. As discussed in §4.1, we expect
multipath self-interference to be more severe in this case.
The results here are more unpredictable. When the tag is 1
meter from reader, the highest bitrate (Block A) is chosen.
When the tag moves just a bit further to 1.5m, the opti-
mal bitrate moves from Block A to Block F (as predicted by
the first column of Figure 7). This point is clearly caused
by multi-path self-interference as described in Figure 3 —
RSSI is high, which would suggest excellent channel qual-
ity, but packet loss is high as well. The multipath effects
reduce when the tag moves a bit more to 2m, and the opti-
mal bitrate changes to Block B. After that, channel quality
progressively degrades and the optimal selection moves to
Block C and finally to Block I.

The two figures also show the goodput obtained by the
second-highest bitrate (green circles). There are cases where
the second-highest bitrate has considerably lower through-
put than the optimal one, where errors in classification will
be expensive. But there are also several cases where the

difference is small, and classifier errors will not lead to sig-
nificant reduction in goodput.

Bitrate boundaries: While Figure 7 provides an intu-
ition for how the combination of link metrics can be used
to predict bitrate, it is an idealized model and the actual
boundaries between the different clusters in real-world data
are likely to be less regular. Understanding these block
boundaries can provide a better idea for how well a classifier
would work and where classification errors might occur.

Figure 12 shows the empirically measured optimal good-
put mode and their corresponding RSSI and lossrate across
several reader-tag distances, placements and times of day.
Each circle shows the case when a particular bitrate was se-
lected as the optimal bitrate, and maps to one of the blocks
in Figure 7. We did not observe points for some of the clus-
ters, and do not plot them in the figure. As can be expected,
the boundaries between clusters are not as regular as shown
in the idealized bitrate map, however similar trends can be
observed. Also, it can be seen that the classifier might have
errors in boundary regions — for example, some points in
Block A fall into the Circle B (red points in the green circle),
so these might lead to mis-classification. However, we also
notice that in these boundary regions, the goodput of both
choice A or B is similar, hence both are good choices.

Classifier Accuracy: We turn to evaluating the accuracy
of our classifier. To train the classifier, we use 158 sample
points from a room over a day, where each sample involves
placing the tag at a random location relative the reader, and
measuring the optimal bitrate, the RSSI across channels and
the packet loss across channels. After the training process,
the classifier has an empirically measured RSSI/packet loss
to bitrate map.

Table 4 describe the three settings that we use for testing,
each of which stresses the classifier in a different way. Group
1 is a dataset from the same room as the training set, but
on a different day, Group 2 is a dataset on a corridor with
different multipath propagation characteristics, and Group
3 is a dataset in a corridor where we expected substantial
multipath since there were a significant number of metal ob-
jects including servers nearby. For each test set, we compare
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the selected bitrate given by classifier to the ground truth
optimal bitrate to evaluate the accuracy of the classifier.

The accuracy of classifier in the three groups of experi-
ments is shown in Table 5. We observe that for the first and
second groups, the classifier picks up the optimal goodput
mode with over 83% accuracy and achieves over 89% of the
optimal goodput. For the third group, the accuracy of select-
ing the optimal bitrate drops dramatically to around 50%,
which seems poor. However, a large number of these cases
fall into the boundaries between clusters, hence despite low
accuracy, the classifier achieves 88% of the optimal goodput.

To summarize, these results show that a) our classifier can
achieve approximately 89% of the goodput achieved by op-
timal bitrate selection under varying conditions, and b) the
classifier can be trained in one region and used in several
other regions with vastly different propagation and multi-
path effects without significant effect on goodput.

Group 1 Group 2 Group 3
Training data room/day 1 room/day 1 room/day 1
Testing data room/day 2 corridor1/day 3 corridor2/day 4
Training size 158 158 158

Test size 347 161 162

Table 4: Three groups of experiments for verifying
the accuracy of classifier.

Training data Testing data Accuracy % optimal goodput
room/day1 room/day2 83.95% 98.18%
room/day1 corridor2/day3 86.47% 89.75%
room/day1 corridor2/day4 51.38% 88.95%

Table 5: The accuracy for classifier to choose opti-
mal goodput mode. It also shows the percentage of
goodput achieved compared with optimal goodput.

Comparison against reader bitrate control: In this
evaluation, we ask two questions: a) how does BLINK’s se-
lected bit-rate compare to the optimal bit-rate, and b) how
does our classifier perform if it only uses RSSI or loss-rate
as feature. We use data from all four settings in Table 4 in
this evaluation.

Figure 13 shows a CDF of goodput from an optimal scheme
that always selects the best bit-rate, the goodput achieved
by BLINK, and the goodput obtained by our classifier when
utilizing only RSSI/loss rate as feature. We find that BLINK
largely follows the optimal case in terms of goodput, and
picks a sub-optimal rate only 18% of the time. The loss-
rate based classifier is the next best mechanism and picks
a sub-optimal bit-rate 30% of the time, although the differ-
ence in goodput is only about 3%. The RSSI-based classifier
performs the worst, and picks a sub-optimal bitrate 62% of
the time, and has on average 15% lower throughput than
BLINK. This shows that using a combination of loss-rate
and RSSI performs better than using only one of these met-
rics, and that BLINK performs close to an optimal scheme.

Effect of fast channel probing on bitrate: The results
so far assumed that the classifier was given the full channel
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Accuracy % optimal goodput
Regular probe 85.45% 97.08%
One Query probe 88.72% 98.06%
10 random probe 73.44% 92.75%
One Query probe + 10 random probe 72.34% 91.48%

Table 6: The accuracy for classifier to choose opti-
mal goodput mode under fast channel probing. It
also shows the percentage of optimal goodput re-
tained.

probe i.e. full information across 50 channels. As described
in §4.3.3, this is very time consuming, and fast channel prob-
ing can reduce channel probe time by 35×. So, we ask: how
does fast probing impact classification accuracy? Our re-
sults are based on a dataset collected in the high-multipath
corridor (same environment as corridor2/day4), since it rep-
resents the worst case scenario. We use a trace-driven sim-
ulation to identify how different schemes would perform.

Table 6 summarizes our results. The second row shows
that using one query per channel rather than the default
seven queries does as well, or in fact a bit better in terms
of classifier accuracy and fraction of optimal goodput. The
third row shows that cutting down on the number of chan-
nels to sample from 50 to 10 reduces accuracy to 73% but
still achieves 93% of the goodput of the optimal scheme. Fi-
nally, combining the two metrics has a similar effect. This
result shows that on readers where the probe time is very
long, a combination of one query per channel and random
subset of channels can achieve 35× reduction in probe times
without significantly impacting goodput.

Effect of fast channel probing: We now look at the
benefits of fast channel probing on performance both for a
static tag and mobile tag. In the mobile case, we attach
a tag to a LEGO toy train which moves along a 1m×2.5m
oval track. The mobility detector triggers rate adaptation
roughly every five seconds in this experiment. Figure 14
shows the goodput achieved by the two schemes. Fast chan-
nel probing increases goodput by 29% for one mobile tag
and 38% for one static tag.
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Figure 14: The goodput of rate adaptation and rate
adaptation under fast probing for 1 static and mobile
tag.

6.3 Channel selection/switching
We now turn to an evaluation of the goodput achieved

by the channel selection/switching algorithm. Even though
FCC regulations and EPC Gen 2 provides flexibility for
channel selection, commercial readers do not provide user-
level control over these parameters. As a result, we evaluate
the algorithm in two ways. First, we use a trace-driven sim-
ulation, where the trace is a repeated 50-channel scan of a
tag by an Impinj reader. We stitch the dwell times for each
channel together to form a single continuous trace on top
of which we emulate the channel selection algorithm. While
this trace does not entirely reflect reality, it can give a suf-
ficient picture of the performance of our algorithm. Second,
we implement the channel selection algorithm on the USRP
software radio reader. The downside of this study is that
the USRP reader behaves quite differently from the commer-
cial reader — packet losses are much higher, loss transitions
are less steep and burstiness is less evident. Despite this,
the USRP reader evaluation provides a baseline for how our
techniques would perform when the channel behaves differ-
ently from expected.

We evaluate both channel selection and channel switching
— the former assumes that lossrate information is available
for all channels, whereas the latter switches dynamically and
doesn’t require prior knowledge of which are good or bad
channels. Figure 15 compares the performance of channel
selection and switching against the default scheme used by
commercial readers.

The results on trace-driven simulations show that channel
switching is 2.16× better than the default scheme and chan-
nel selection is marginally worse and is 2.06× better than
the default. This shows that switching is effective due to
burstiness and sharp transitions. For the USRP reader, the
results are a bit different — switching is 1.12× better than
default and selection is 1.31× better.

6.4 Overall system performance
We now look at the performance of an integrated system

on a commercial reader. Since channel selection or switch-
ing cannot be enabled on these readers, we do not include
the module in our combined evaluation. Our goals are two-
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Figure 15: The goodput achieved with channel se-
lection and switching.

fold: a) to provide a comparison between BLINK, AutoSet,
and SampleRate, and b) to understand the benefits of our
schemes at scale when there are large numbers of static or
mobile tags.

First, we look at the static case, where we evaluate per-
formance as we increase the number of static tags placed
in front of a reader from 1 to 40. These tags are placed
at random locations. To obtain statistically significant re-
sults, the results are aggregated over several runs and several
placements. Figure 16 shows that for one static tag, BLINK
is 3.15× better than AutoSet. SampleRate achieves 2.92×
better goodput than AutoSet which is just slightly lower
than BLINK. When the tag population scales to 20, BLINK
and SampleRate are 1.6× and 1.24× better than AutoSet
respectively. When the tag population is further increased
to 40, the goodput increase is 1.34× for BLINK but Sam-
pleRate degrades and has a throughput of only 0.9× that
of AutoSet. This is likely because of the increase in MAC
layer collisions leading to higher variability in packet loss
rates and consequently poor decision-making by SampleR-
ate. Thus, BLINK has significant benefits as deployment
density increases even under static settings.

Second, we look at the mobile case. We place one, five,
and ten RFID tags at fixed locations on a person who moves
continuously in a 15m×15m room. The movement pattern
involves walking towards and away from the reader, and
walking in a circle along the edges of the room. We re-
peat the same mobility trace at roughly the same speed to
obtain a fair comparison among BLINK, SampleRate and
AutoSet. Figure 17 show the summary statistics across 10
mobility traces for each scheme. We see that for one mobile
tag, BLINK is 2.29× better than AutoSet, and SampleRate
is 1.77× than AutoSet. However, as the number of mobile
tags grow, the benefits of BLINK increases. When 5 mobile
tags are employed, the gains of BLINK and SampleRate over
AutoSet are 1.96× and 1.42× respectively. When tag popu-
lation scales to 10, BLINK is 2.44× better than AutoSet,
whereas SampleRate is only 1.21× better than AutoSet.
These results clearly demonstrate the benefits of BLINK
across a wide range of scenarios and scales for a realistic
number of RFID sensors.

 0

 20

 40

 60

 80

 100

 120

 140

1 static tag 20 static tags 40 static tags

G
o

o
d

p
u

t 
(r

e
a

d
s

/s
e

c
)

B
L

IN
K

S
a
m

p
le

R
a
te

A
u

to
S

e
t

 0

 20

 40

 60

 80

 100

 120

 140

1 static tag 20 static tags 40 static tags

G
o

o
d

p
u

t 
(r

e
a

d
s

/s
e

c
)

B
L

IN
K

S
a
m

p
le

R
a
te

A
u

to
S

e
t

Quartiles
Mean

Figure 16: The goodput of AutoSet, SampleRate,
and BLINK for 1, 20 and 40 static tags.
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Figure 17: The goodput of AutoSet, SampleRate,
and BLINK for 1, 5, and 10 mobile tags.

7. RELATED WORK
There has been substantial prior work on wireless channel

characteristics and link layers. Our primary contribution
is to design a link layer that is optimized to the unique
characteristics of backscatter communication.

Backscatter system: Much of the work on backscatter
communication is specific to optimizing communication from
EPC Gen 2 tags, for example, better tag density estima-
tion [26], better search protocols to reduce inventorying time
[19], better tag collision avoidance [20], more accurate tag
identification [29], better recovery from tag collisions [8].
Some work has also looked at how physical layer parame-
ters account for the major propagation characteristics of the
backscatter channel [14]. Other work has looked at more ef-
ficient use of harvested energy, for example Dewdrop [10]
balances task demands with available energy, and our prior
work uses hybrid energy harvesting to increase communica-
tion range to many tens of feet [15]. None of these tackle
link-layer adaptation mechanisms to improve goodput.

ECP Gen 2 optimization: Recent work with Computa-
tional RFID devices such as the Intel WISP includes Buet-



tner et al [11], who explore how the RFID PHY layer inter-
acts with EPC Gen 2 and identify physical layer parameters
that degrade overall performance and reliability. [11] also
suggests adapting the link layer to improve goodput by us-
ing FM0/640 kbps to read tags until only low SNR tags are
left (because they can’t be read at the high rate), and then
changing to Miller-8/256 kbps to read the rest of the tags.
Our work addresses backscatter bit-rate selection in a much
more rigorous manner.

In an effort complementary to this paper, we have de-
signed Flit, a high-throughput and low-power MAC layer
that addresses inefficiencies of EPC Gen 2 for bulk data
transfer from sensors [16]. BLINK is complementary to this
effort and differs in two ways: 1) Flit involves optimiza-
tions at the protocol level of the EPC Gen 2 MAC, whereas
BLINK is entirely at the link layer and agnostic of how the
protocol works, b) Flit involves optimizations on the tag-
side and therefore requires programmable RFID tags (e.g.
WISP) whereas BLINK is entirely at the reader-side and
can operate with any commercial RFID tag.

Link signatures: Recent work has also explored the prob-
lem of location distinction using link signatures [30]. The
main idea is to form a signature of the channel impulse re-
sponse from physical layer data at a receiver, and use this
to detect location changes. This is tested for WiFi software
radios where PHY information is available. At a high level,
our mobility detector uses similar ideas, but we differ in our
focus on backscatter communication and link metrics that
are relevant to capturing the channel signature for RFIDs.
Link signatures have also been used in localization — for
example, SkyLoc [25] exploits GSM signal strength finger-
printing for identifying the current floor of a user in tall
multi-floor buildings. While BLINK exploits radio finger-
prints as well, it does so for location distinction, which is
simpler and does not involve an extensive training phase.

Estimating channel quality: Link layer mechanisms for
active radios rely on different link metrics including SNR,
loss rate and PHY-layer hints. SNR is used by AccuRate
[23], which uses it to select the appropriate constellation
map, FARA [21], which uses per-frequency SNR to evaluate
the depth of fading in each channel of 802.11, and [17], which
proposes an effective SNR metric to predict the highest link
bit rate. Packet loss rates are widely used, for example, [28]
uses short-term loss ratio to opportunistically guide its rate
change decisions. More recently, PHY-layer hints have been
used, for example SoftRate [27] uses “SoftPHY” or confi-
dence values conveyed by PHY to learn the bit error rate
(BER). Our work addresses unique aspects of backscatter
communication where we find RSSI and packet loss rate are
needed in conjunction to capture path loss and multipath
fading characteristics.

Channel selection: [24] investigates β-factor metric to
measure intermediate link burstiness and proposes oppor-
tune transmissions to improve bursty link packet reception
ratio. In contrast, our work exploits burstiness for fast chan-
nel switching in search for better transmission opportuni-
ties. Our work also differs from CSMA-based techniques for
channel selection (e.g. [18]) since we deal with backscatter-
specific considerations.

8. CONCLUSION
Backscatter communication offers an attractive alterna-

tive to existing active-radio based sensor systems. However,
backscatter has predominantly been used for communica-
tion with RFID tags which have limited data to transfer,
and there has been limited prior work on understanding how
backscatter can be used for high-throughput communication
between readers and sensors. Our work bridges the gap by
providing an in-depth exploration of the physical layer be-
havior of backscatter links, what metrics are needed to cap-
ture this behavior, and how bitrate adaptation and channel
selection can exploit these channel characteristics to improve
throughput while remaining within FCC guidelines for the
UHF RFID frequency range. Results show that our link
layer, BLINK, provides substantial throughput benefits for
a range of channel conditions, scales, and mobile conditions.
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