
HitchHike: Practical Backscatter Using Commodity WiFi

Pengyu Zhang1∗, Dinesh Bharadia2∗, Kiran Joshi1, Sachin Katti1
Stanford University1, MIT2

Co-primary Student Authors∗

{pyzhang, krjoshi, skatti}@stanford.edu, dineshb@csail.mit.edu

ABSTRACT
We present HitchHike, a low power backscatter system that
can be deployed entirely using commodity WiFi infrastruc-
ture. With HitchHike, a low power tag reflects existing
802.11b transmissions from a commodity WiFi transmitter,
and the backscattered signals can then be decoded as a stan-
dard WiFi packet by a commodity 802.11b receiver. Hitch-
Hike’s key invention is a novel technique called codeword
translation, which allows a backscatter tag to embed its
information on standard 802.11b packets by just translat-
ing the original transmitted 802.11b codeword to another
valid 802.11b codeword. This allows any 802.11b receiver
to decode the backscattered packet, thus opening the doors
for widespread deployment of low-power backscatter com-
munication using widely available WiFi infrastructure. We
show experimentally that HitchHike can achieve an uplink
throughput of up to 300Kbps at ranges of up to 34m and
ranges of up to 54m where it achieves a throughput of around
200Kbps.

CCS Concepts
•Networks→Network architectures; Wireless access
networks;

Keywords
Backscatter; WiFi; Wireless

1. INTRODUCTION
Backscatter communication has recently attracted inter-

est for applications such as implantable sensors, wearables,
and smart home sensing because of its ability to offer near
zero-power connecitivity to these sensors. These applica-
tions have severe power constraints, implantable sensors for
example have to last for decades, while even more tradi-
tional smart home monitoring applications will benefit from
sensors and actuators that can last several years. Backscat-
ter communication can satisfy the connectivity requirements

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SenSys ’16, November 14-16, 2016, Stanford, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4263-6/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2994551.2994565

while consuming so little power that it could be powered by
harvesting alone, or with batteries that could last several
years.

Traditional backscatter systems however require special-
ized hardware to generate the excitation RF signals that
backscatter radios can reflect, as well as to decode the backscat-
tered signals. Recent research such as WiFi backscatter [18],
BackFi [2] and Passive WiFi [20] has reduced the need for
specialized hardware. Passive WiFi for example can decode
backscattered signal using standard WiFi radios. However,
it still requires a dedicated continuous wave signal generator
as the excitation RF signal source. BackFi needs a propri-
etary full duplex hardware add-on to WiFi radios to enable
backscatter communication. Inter-Technology Backscatter
[14] is a system that enables backscatter communication
from a commercial Bluetooth radio to a commercial WiFi ra-
dio. Despite its novelty, it does not enable backscatter com-
munication among WiFi radios. Consequently, a backscatter
system that can be deployed using commodity WiFi radios
on access points, smartphones, watches and tablets, does
not exist.

Further, recent work such as Passive WiFi also requires
twice the spectrum compared to other approaches such as
BackFi, since they generate the RF excitation tone signal
on the center of two WiFi channels and the backscatter tag
frequency shifts and reflects the excitation signal on both
the two WiFi channels. Due to the frequency shifting, the
WiFi device (the reader) that is decoding the backscattered
signal does not need full duplex hardware. However the
tradeoff is that for a single backscatter communication link,
we end up using two 20Mhz WiFi channels. For example,
the continuous wave signal generator sends out a tone at
the center of Channel 3 and the backscatter occupies both
Channel 1 and 6, rendering them unusable for any other
WiFi communication. Given the paucity of spectrum in the
unlicensed band, solutions that do not waste spectrum would
be desirable.

We introduce HitchHike, the first backscatter communi-
cation system that works using only commodity 802.11b
WiFi devices for both generating the RF excitation signal
as well as decoding the backscattered signal. We observe
that most users are surrounded by multiple WiFi radios, ei-
ther in APs or on their phones and tablets or even on their
smartwatches. HitchHike utilizes these commodity WiFi ra-
dios as both an RF source for backscatter and a receiver
which decodes the backscattered signals. This allows Hitch-
Hike to be very cost effective and widely deployable since it
can benefit from the ubiquity and low-cost nature of WiFi

-600

-400

-200

 0

 200

 400

 600

 0 100 200 300 400 500 600 700 800 900 1000

D
is

ta
nc

e
(m

)

Signal Strength (dBm)

Figure 1: HitchHike concept: HitchHike enables backscatter
communication between commodity 802.11b WiFi radios.

and eliminate the need for a specialized, dedicated reader
or receiver. Second, HitchHike does not waste spectrum, it
piggybacks backscattered signals on WiFi packets that are
being used for productive communication. Hence, HitchHike
can be efficiently deployed with current WiFi infrastructure
and unlicensed spectrum.

HitchHike’s deployment is best explained via the example
in Figure 1. The excitation device is a smartphone with a
standard WiFi radio. The smartphone transmits an 802.11b
packet to the first AP to which it is connected on Channel 1.
To backscatter, the tag receives the WiFi packet, frequency
shifts it to Channel 6, modulates its information and then
reflects the WiFi signal. The second AP, which is tuned to
listen on Channel 6, then receives and decodes the backscat-
ter packet as a standard WiFi packet. As shown in Figure 1,
deploying HitchHike is very simple. It does not require any
specialized hardware nor does it waste any spectrum. Both
WiFi channels are used for productive communication, one
for standard WiFi and the other for the backscatter link.

The key challenge in realizing HitchHike is: how can a
backscatter tag produce a WiFi compliant packet by backscat-
tering another WiFi compliant packet and also modulate its
data on the resulting packet? HitchHike’s key conceptual
contribution here is codeword translation. Specifically,
every 802.11b WiFi packet is a sequence of codewords that
are picked from a codebook to represent different bits that
are being transmitted. HitchHike’s backscatter tags act as
codeword translators, in other words they take a valid code-
word in the transmitted 802.11b packet and translate it into
a different valid codeword from the 802.11b codebook. The
specific translation encodes the bit that the backscatter tag
itself wants to communicate. The backscattered packet is
therefore like any other 802.11b packet, albeit with a se-
quence of translated codewords depending on the data that
backscatter tag wants to communicate. Consequently it can
be decoded by any standard 802.11b receiver.

HitchHike’s practical design makes two contributions in
realizing the concept of codeword translation:

• Efficient XOR Decoder: HitchHike’s decoding op-
eration at the receiver is a simple XOR of the trans-
mitted 802.11b packet and the backscattered 802.11b
packet. The decoder is efficient because it allows the
original 802.11b packet to be used for productive com-
munication and simply piggybacks backscatter data on
that transmission.

• Spectrally efficient frequency shifting: If the back-
scatter tag simply reflects the transmitted 802.11b packet,
the receiver cannot likely decode the backscattered
packet since its received simultaneously on the same
channel as the original transmission. This leads to

strong self-interference from the original 802.11b trans-
mission leading to decoding failure. To tackle this
challenge, like recent work [20, 35], HitchHike uses
frequency shifting where the backscattered packet is
shifted and transmitted on an adjacent non-overlapping
WiFi channel. However these frequency shifting tech-
niques produce two sidebands, one is the desired ad-
jacent channel backscatter transmission whereas the
other is an unwanted and wasted sideband that can
also interfere with other communication. Both Hitch-
Hike and Inter-Technology Backscatter [14] describe a
single sideband frequency shifting technique that en-
sures that only the desired backscatter sideband is pro-
duced and other spurious sidebands are eliminated.

The two techniques listed above together ensure that Hitch-
Hike is spectrally efficient and does not waste spectrum un-
like prior work based on frequency shifting. Both WiFi chan-
nels are used for productive communication, and no spurious
sidebands are produced.

We also note that the focus of this paper is on the uplink
from the HitchHike tag to the HitchHike AP. The reason
is that the IoT applications that we are designing for are
bottle-necked on the uplink. These gadgets (such as fitness
trackers, home sensors, wearables, etc) are collecting a lot
of sensor data and need to upload them to the cloud and
downlink often isn’t needed, or if it is, very low throughput
of a few Kbps suffice [24]. Hence in the rest of the paper we
will focus on the uplink, but note that prior work has already
demonstrated WiFi backscatter designs (which can be used
with HitchHike too) for the downlink that can provide upto
20 Kbps [18].

We implement HitchHike using an FPGA and a customized
backscatter analog front end board. Our empirical evalua-
tion shows the following:

• HitchHike is able to decode backscattered data even
though the HitchHike decoder (an MacBook Pro lap-
top) is 54m away from a tag in the line-of-sight (LOS)
deployment, 1.5× longer than the maximum range re-
ported by Passive WiFi. In non-line-of-sight (NLOS)
deployment, HitchHike is able to decode the tag data
at 32m.

• HitchHike is able to achieve close to 300Kbps through-
put when the receiver is less than 34m from the tag
in LOS deployment. At farther distances in LOS and
NLOS deployments, HitchHike is able to achieve an av-
erage of 222kbps and 50kbps throughput respectively.

• We demonstrate that our HitchHike tag only consumes
power on the order of 33µW despite the fact that
it moves the backscattered signal into another WiFi
channel. We also show that our system is able to co-
exist gracefully with existing WiFi infrastructure.

2. 802.11B PRIMER
HitchHike backscatters 802.11b packets from commod-

ity WiFi devices. Here we give a brief description of how
802.11b packets are encoded and decoded to provide con-
text to the underlying HitchHike’s design.

1 Mbps and 2 Mbps DSSS transmission: An 802.11b radio
uses a finite set of codewords to encode packets. For exam-
ple, 1 Mbps 802.11b transmission uses only two codewords,

code0 and code1, as shown in equation 1. Data zero and
one are encoded as code0 and code1 respectively. The only
difference between the two codewords is a 180o phase offset,
which indicates whether data zero or one is transmitted. The
barker code used by the two codewords is a sequence similar
to the PN sequence used in the CDMA system. It is de-
signed to significantly increase the SNR at the decoder. For
example, 802.11b decoder can decode 1 Mbps at -95 dBm.

code0 = barker

code1 = barker× ejπ
(1)

Instead of using only two codewords, 2 Mbps 802.11b uses
four codewords in its codebook to encode packets as shown
in equation 2. Data 00, 01, 11, and 10 are encoded as code0,
code1, code2, and code3 respectively. Again, the data are
embedded in the phase of the codewords.

code0 = barker

code1 = barker× ej
π
2

code2 = barker× ejπ

code3 = barker× ej
3π
2

(2)

5.5 Mbps and 11 Mbps CCK transmission: 5.5 Mbps and
11 Mbps CCKs use a larger set of codewords compared to the
1 Mbps and 2 Mbps cases. Equation 3 shows the codewords
used by the 5.5 Mbps transmission. To transmit at 5.5 Mbps,
CCK divides the bit stream into blocks of four bits. The first
two bits are used to determine the phase θ of the codeword,
which varies among 0, π

2
, π, and 3π

2
. The last two bits are

used to choose one of the four barker codes. 11 Mbps CCK
transmission uses a similar strategy where the data stream
is divided into blocks of 8 bits. Then, the first two bits are
used to select the phase, and the last six bits are used to
choose one of the 64 Barker codes.

code0 = barker0 × ejθ0

...

code15 = barker15 × ejθ15
(3)

In summary, 802.11b WiFi protocol uses a finite set of
codewords to encode packets. Our backscatter system lever-
ages the fact that only a finite set of codewords are used,
and if the tag can translate the codeword codei used by the
802.11b transmitter to another codeword codej within the
same set, then any 802.11b receiver can decode the backscat-
tered packet. We now turn to discuss our design, which is
based on this observation.

3. DESIGN
Figure 2 shows an overview of our system. A commod-

ity WiFi radio transmits a normal 802.11b WiFi packet,
the backscatter tag reflects the packet to another 802.11b
WiFi radio while modulating its information. When the tag
backscatters the packet, it shifts the frequency of the re-
flected signal to an adjacent WiFi channel. The 802.11b
receiver listening on the adjacent WiFi channel receives the
reflected WiFi packet, decodes the packet using the normal
WiFi decoding chain, and then extracts the backscattered
information from the decoded bit stream. Next, we discuss
the key components of our system which enable this capa-

802.11b TX 802.11b RXcode0 code0/code1

802.11b TX 802.11b RX

backscattered signal802.11b signal

self-interference

802.11b TX 802.11b RXWiFi packet
reflected

WiFi packet

Figure 2: 802.11b code word translator at the tag.

bility, including 802.11b code word translator, XOR decoder
and spectrally efficient frequency shifter.

3.1 HitchHike’s Codeword Translator
The key idea underlying HitchHike is the concept of code-

word translation. Conceptually, any modulation scheme (in-
cluding WiFi’s) is a mapping between bits and codewords
from a discrete codebook. Decoding is the inverse opera-
tion, mapping from a received codeword to the actual bit.
For a commodity WiFi receiver to decode the backscattered
packet, its codewords need to come from the same code-
book as that of WiFi. In other words, if the backscatter tag
can act as a codeword translator, i.e. translate the code-
words from the original 802.11b packet to other codewords
in the 802.11b codebook, then a standard 802.11b receiver
will be able to decode the packet, and a standard 802.11b
transmitter can transmit original data. For example, equa-
tion 4 shows how the codeword for 1 and codeword for 0
are related, or in otherwords codeword 0 can be translated
into codeword 1. The trick, of course, is to implement the
translation based on what bits the tag wants to backscatter
and such that the 802.11b receiver can recover the applied
translation and therefore recover what bits the backscatter
tag wanted to communicate.

codeword 0 = 1× barker

codeword 1 = −1× barker = codeword 0× ejπ
(4)

For backscattering 802.11b 1Mbps signals, HitchHike’s tag
implements a simple translation. If it wants to backscatter
the bit zero, then it does no translation and simply reflects
the original codeword. If it wants to backscatter bit one,
then it translates the received codeword to the only other
valid codeword in the 802.11b 1Mbps codebook. To do so,
it simply shifts the phase of the received codeword by 180
degrees as shown in equation 5. If the original 802.11b bit
was zero, this will translate to a one being backscattered,
and vice versa if the original 802.11b bit was one. This is
shown via equation 5. Figure 2 shows an example of such
translation. Section 3.5 describes how the tag physically
implements the codeword translation.

Tag data 0 = 802.11b data

Tag data 1 = 802.11b data× ejπ
(5)

3.2 HitchHike’s XOR Decoder
The 802.11b receiver can now decode the backscattered

packet since all the codewords are valid codewords from the
802.11b 1Mbps codebook. But to recover the bits that the
backscatter tag wanted to send, it needs to figure out what
translations were applied to the original 802.11b bits. Our
key observation here is that recovering the translation is
equivalent to XOR-ing the decoded packet with the original
802.11b packet. To see why this is true, consider the code-
word translation for 802.11b outlined above. If the original
bit was one and the backscatter tag wanted to send one,

Table 1: Logic table between the decoded data, 802.11b bit,
and backscatter bit.

decoded data 802.11b data backscatter bits
1 1 0
1 0 1
0 1 1
0 0 0

802.11b TX 802.11b RX0000 0101/1010

802.11b TX 802.11b RX

backscattered signal802.11b signal

self-interference

Figure 3: Self-interference from the 802.11b transmitter.

then translation was applied. Practically, this means that
the phase shift by 180 degrees was applied twice (once at the
transmitter and again at the backscatter tag), thus resulting
into codeword corresponding to zero was backscattered. If
the original bit was one and the tag wanted to send zero,
then no translation was applied (no phase shift) and this
resulted in one being backscattered. Similarly the other two
combinations are shown in Table 1. As we can see, that
simply gives us the logic table for a XOR operation. Thus,
the decoded packet is basically original data XORed with
the backscatter bit.

decoded packet = original data⊕ backscatter bits (6)

Hence, to recover the backscatter bits, the receiver simply
has to invert the XOR with original 802.11b packet. To do
so however, it needs to know the original 802.11b packet.
Our current design assumes that HitchHike will be deployed
in a setting similar to the one shown in Figure 1. Here, a
smartphone is transmitting the original 802.11b packet to
WiFi AP1 which is listening on Channel 1. The tag imple-
ments codeword translation as described above, shifts the
backscatter signal to channel 6 and the backscattered packet
is decoded by AP2 which is listening on Channel 6. AP2
sends the decoded backscattered packet to AP1 which then
implements the XOR operation to recover the backscatter
bits from the tag. We expect such a deployment scenario to
be quite typical in most enterprise or home scenarios, where
often there are several APs listening on adjacent channels.

However, if two APs are not available, the smartphone
can transmit a known 802.11b packet (e.g a packet of all 1s)
and then any WiFi radio receiving the backscattered packet
can XOR with the known 802.11b packet and recover the
backscatter data. Finally, the above description was spe-
cific to the 1Mbps 802.11b transmission protocol. However
the same concept of codeword translation can be applied to
any of the 802.11b transmissions rates up to 2Mbps since
codeword translation for all of them can be implemented by
phase shifting techniques. Our implementation in this pa-
per focuses on the 1Mbps bitrate, the other bitrates are the
focus of our future work.

3.3 Spectrally Efficient Frequency Shifter
Once a tag has the ability to translate codewords between

an 802.11b transmitter and an 802.11b receiver, it can mod-

-90
-80
-70
-60
-50
-40
-30
-20

 0 5 10 15 20 25 30 35 40 45 50

Si
gn

al
 S

tr
en

gt
h

(d
B

m
)

Distance (m)

Self-interference
Backscatter

Figure 4: Signal strength of self-interference and backscat-
tered signal.

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 2.38 2.4 2.42 2.44 2.46

Si
gn

al
 S

tr
en

gt
h

(d
B

m
)

Frequency (GHz)

Figure 5: Empirically measured 802.11b transmission spec-
trum.

ulate information on top of an 802.11b signal. However,
in order to decode the backscattered tag data, we have to
deal with another factor — self-interference from the 802.11b
transmitter. Figure 3 shows an example of such interfer-
ence. When an 802.11b receiver receives the backscattered
signal, it also receives the signal from the 802.11b transmit-
ter. This 802.11b signal acts as a strong interference because
it shares the same frequency band as the backscattered sig-
nal and to make matters worse, the exciting signal is usually
∼30dB higher than the backscattered signal. Figure 4 shows
the received signal strength of backscatter and the 802.11b
self-interference. In this experiment, the backscatter tag
is 1m away from the transmitter and we move the receiver
away from the tag. We measured the backscattered and self-
interference signal strength. At 10m, the self-interference is
40dB higher than the backscattered signal and makes the
backscattered signal almost impossible to decode.

[2] addresses this problem by exploiting full-duplex com-
munication techniques. However, [2] requires hardware mod-
ification on existing 802.11b radios, which is not preferred.
Our system design sidesteps the self-interference problem by
enabling the backscatter tag to frequency shift the backscat-
tered signal to an adjacent, non-overlapping WiFi channel.
However a non-overlapping WiFi channel does not imply
that we will not see any self-interference, the WiFi trans-
mission emits energy in adjacent channels too. Figure 5
shows the spectral profile of an 802.11b WiFi transmission.
It shows that there is still a signal leaking into the adjacent
band 11Mhz away from the center of the channel, albeit
30dB lower. However, the leaked signal strength degrades
when we are further away, for example, 50dB signal degra-
dation when we are 22MHz away from the center.

To implement such frequency shifting, HitchHike multi-

-90
-80
-70
-60
-50
-40
-30
-20
-10

 0

 2.38 2.4 2.42 2.44 2.46 2.48 2.5 2.52 2.54

Si
gn

al
 S

tr
en

gt
h

(d
B

m
)

Frequency (GHz)

Double Side Backscatter
Single Side Backscatter

Figure 6: The spectrum of single side-band and double side-
band backscatter.

plies the 802.11b incident signal with a square wave pro-
duced by the tag as S802.11b × Stag. When the frequency
of the 802.11b incident signal is fc and the tag square wave
frequency is ft, the backscattered signal will be moved to
the fc± ft band, which is ft away from the original 802.11b
signal. We can choose ft large enough such that the self-
interference from the incident 802.11b signal is small. In our
implementation, our tag generates a square wave at 30MHz
in order to move the backscattered signal 30MHz away from
the incident 802.11b signal.

3.4 Producing single side-band backscatter
The simple frequency shifting design described above has

a drawback: it creates copies of the 802.11b signal on both
sides of the main signal as shown in Figure 6. In this exper-
iment, the 802.11b transmitter transmits with a central fre-
quency of 2.462GHz. The tag shifts the backscattered signal
50MHz away from the 802.11b signal. We see that such fre-
quency shifting creates copies on both 2.462GHz± 50MHz
(the red signal). The double sides backscatter signal creates
unwanted interference in other band and would hurt any
transmission happening in that band. As a result, the tag
needs to create a single side band backscatter signal, with
its data only on that band. Before we eliminate the other
side-band, let’s see why we get double sidebands.

When the tag toggles the RF switch at ft frequency, it
essentially uses a square wave Stag(ftt) to modulate the in-
cident 802.11b signal, this is basically a multiplication opera-
tion. The square wave signal can be presented using Fourier
series as shown in equation 7 and the signal received at the
tag by the 802.11b transmitter can be represented using
S802.11b and r(t) in equation 8 shows the signal backscat-
ter by the tag. We assume the 802.11b signal as a sin-
souid sin(2πfct) for simplicity of anlaysis. From equation 8,
we can observe sidebands on both sides of the spectrum
cos(2π(fc − nft)t and cos(2π(fc + nft)t) with center fre-
quencies fc+nft and fc−nft are created in the backscatter
signal. Both HitchHike and Inter-Technology Backscatter
[14] describe a technique to eliminate the unwanted side-
band, which we explain next.

Stag(ftt) =
4

π

∞∑
n=1,3,5...odd

1

n
sin(2πnftt) (7)

0/1

RF switch

RF switch

r1(t)

r2(t)

pi/2

r(t)

logic

On-Off keying

On-Off keying

r1(t)

r2(t)

logic

signal in 90
0delay

signal out

splitter
couplerOn-Off keying

On-Off keying

r1(t)

r2(t)

logic

signal in

delaysplitter
pi/4

(a) Single side-band backscatter with a sin-
gle antenna

0/1

RF switch

RF switch

r1(t)

r2(t)

pi/2

r(t)

logic

On-Off keying

On-Off keying

r1(t)

r2(t)

logic

signal in 90
0delay

signal out

splitter
couplerOn-Off keying

On-Off keying

r1(t)

r2(t)

logic

signal in

delaysplitter
pi/4

(b) Equivalent conceptual design

Figure 7: Figure 7(a) presents the backscatter design with
an antenna for single side-band design. Figure 7(b) shows
the equivalent design via unfolding the backscatter design
for ease of analysis.

r(t) = S802.11b × Stag(ftt)
= sin(2πfct)× Stag(ftt)

=
4

π

∞∑
n=1,3,5...odd

1

n
sin(2πfct)× sin(2πnftt)

=
2

π

∞∑
n=1,3,5...odd

1

n
{cos(2π(fc − nft)t)

− cos(2π(fc + nft)t)}

(8)

We present a design that achieves single side band backscat-
ter, while having low power consumption and introducing
negligible loss on the backscattered signal strength. Concep-
tually, our design is similar to Inter-Technology Backscatter
[14] despite the differences in the implementation details.
Figure 7(b) shows the concept of this design. The key idea is
that the tag receives the 802.11b signal from the transmitter
and then splits it into two copies on two paths. Both copies
pass through the on-off keying (square wave multiplier) on
each path, and as a result, we create double side-band signal
on each path. The trick we make here is that we make the
signal on one path has a negative copy on the one side-band
and has the same copy on the other side-band. Then, when
we sum the signals from the two paths together, we end up
with eliminating the signal on one side-band and increasing
the signal on the other side-band. Let us now look at details
to understand how we can make the signals on the two paths
have different polarization.

The Tag first receives the 802.11b signal from the trans-
mitter, and then splits it into two paths, where each con-

tains the same copy of the 802.11b signal. We then pass
both the signal with square wave multipler, however we de-
lay the square wave signal on the second path by 1

4ft
in the

time domain (which is equivalent to pi
2

phase shift) relative
to the first path r1(t), and refer to it as the delayed copy
r2(t). Both paths are multiplied by the square wave to shift
their frequency. The mathematical formulation of r2(t) is
shown in equation 10 while the non-delayed version r1(t) on
the first path is shown in equation 9. The key observation
here is that r2(t) has a +π

2
and −π

2
phase offset compared to

the first path (r1(t)) on fc − nft and fc + nft, respectively
because of the delay on r2(t). We can exploit these different
phase offset on fc − nft and fc + nft to eliminate one of
them, let us see how.

r1(t) = sin(2πfct)× Stag(fot)

=
4

π

∞∑
n=1,3,5...odd

1

n
sin(2πfct)sin(2πnftt)

=
2

π

∞∑
n=1,3,5...odd

1

n
{cos(2π(fc − nft)t)

− cos(2π(fc + nft)t)}

(9)

r2(t) = sin(2πfct)× Stag(ft(t−
1

4ft
))

=
4

π

∞∑
n=1,3,5...odd

1

n
sin(2πfct)sin(2πnftt−

nπ

2
)

=
2

π

∞∑
n=1,3,5...odd

1

n
{cos(2π(fc − nft)t+

nπ

2
)

− cos(2π(fc + nft)t−
nπ

2
)}

(10)

The idea is to add both the copies r1(t) and r2(t) in a
unique way such that it cancels fc − nft. The technique is,
we phase shift r2(t), the delayed path by π

2
in RF domain

and then add it back to r1(t) to get backscattered signal
r(t) (output signal). Observe that we actually introduced
another +π

2
phase offset on the fc − nft frequency compo-

nent on the delayed path signal r2(t), thus in total we have
created π radians of phase shift on the fc−nft frequency for
the delayed path r2(t) relative to the first path r1(t), thus
fc − nft frequency component gets canceled upon addition
with r1(t). The backscattered signal r(t) can be represented
by equation 12. On the other hand, the frequency compo-
nent at fc + ft has phase shift −π

2
at the delayed path r2(t),

which undergoes +π
2

in RF domain before addition, thus the
resulting in the phase shift of 0o relative to the r1(t), thus
fc + ft gets added constructively and is the only component
left un-canceled. As shown in equation 12, the backscat-
tered signal r(t) only contains frequency components in one
side band fc+nft. Figure 6 shows the empirically measured
backscatter signal strength. Clearly we see that the single

side band design eliminates at least 20 dB of other side band.

r(t) = r1(t) + r2(t)∠
π

2

=
2

π

∞∑
n=1,3,5...odd

{((((((((
cos(2π(fc − nft)t)− cos(2π(fc + nft)t)}

+ {
((((((((((((
cos(2π(fc − nft)t+

nπ

2
+
π

2
)

− cos(2π(fc + nft)t−
nπ

2
+
π

2
)}

=
4

π

∞∑
n=1,3,5...odd

1

n
{−cos(2π(fc + nft)t)}

(11)

r(t) = r1(t) + r2(t)∠
π

2

=
2

π
{(((((((
cos(2π(fc − ft)t)− cos(2π(fc + ft)t)}

+ {
(((((((((((
cos(2π(fc − ft)t+

π

2
+
π

2
)− cos(2π(fc + ft)t−

π

2
+
π

2
)}

= −
4

π
cos(2π(fc + ft)t)

(12)

So far we have shown the input and output model. How-
ever, that is not the case with the backscatter tag. A tag
only has one antenna, which is both input and output. Fig-
ure 7 on the left shows the backscatter tag design which is
folded version of the desgin on the right side of the same
figure. For simplicity, this section conducted tone analysis,
which can very easily be extended to the 11b transmission,
in the interest of space we omit it. Before we finish this
section, we conduct an experiment, where we transmit 11b
signal from the transmitter with the tag deployed at half a
meter from the transmitter and the receiver is deployed at
the 1 meter from the tag. We deploy the tags with and with-
out single side band and show the spectrum plot as shown
in Fig. 5. Clearly we see that SSB design eliminates atleast
30 dB of other side band.

3.5 Putting everything together
Let us now turn to look at how we put every piece of our

system together and run a protocol that is able to identify
when the 802.11b transmitter starts transmission and deter-
mine when the tag starts backscattering its data. Figure 8
shows the timing diagram of different events in our system.
The 802.11b transmitter first occupies the wireless channel
by issuing RTS-to-CTS messages. These messages will re-
serve two WiFi channels, one for the normal WiFi transmis-
sion and another for backscatter. We do not ask the tag to
sense and occupy the wireless channel because the tag can-
not afford the power consumed by spectrum sensing. Once
successful, the 802.11b transmitter can proceed to synchro-
nize with the tag for upcoming backscatter transmission.

In order to synchronize with the tag for its uplink trans-
mission, the 802.11b transmitter sends a sequence of short
802.11b packets in the predetermined packet slots marked
as P1, P2, ..., Pn in Figure 8. The presence and absence
of packets in these predefined slots indicate the data trans-
mitted to the tag using On-Off keying (OOK) modulation.
In order to send data one, the 802.11b transmitter sends a
packet in one time slot. In contrast, the 802.11b transmitter
does not send a packet to encode data zero. This one and
zero sequence transmitted by the 802.11b transmitter can be
identified by the tag using an analog envelop detector. This

CTS-to-SELF

RF Energy is detected by the tag and
digital data (Digital Envelop) is
generated based on the RF envelop

Timeline of various events at the tag

Excitation signal (802.11b WiFi packet)...P1 P2 P3 Pn-1 Pn

...D1 D2 D3 Dn-1 Dn

From the Digital Envelop Tag identifies
the AP and then waits for the
excitation signal to arrive to begin
uploading the data

Once the excitation signal arrives the
Tag can begin modulating its data on
the excitation signal

ENABLE TRANSMIT

ENABLE MODULATION

TX AP issues CTS-to-SELF to capture
the channel and then issues sequence
of 802.11b packets

ENVELOPE of Excitation signal

Figure 8: Putting everything together: timing diagram of events in HitchHike.

envelop detector runs continuously on the tag which out-
puts a signal when the amplitude of the monitored signal is
larger or smaller than a threshold. Once the tag decodes a
predefined sequence from the 802.11b transmitter, it knows
that it can embed backscattered bits on the next incoming
WiFi packet, which is named excitation packet.

After sending the sequence of short packets for synchro-
nizing with the tag, the 802.11b transmitter will start send-
ing excitation packets, which are normal 802.11b packets.
The tag captures the rising edge of each excitation packet
and embeds the backscattered information on the packet.
One important factor that we have to consider is that the
backscattered bit stream should not corrupt the preamble
of the 802.11b packet. Otherwise, 802.11b packet decoder
will fail. In order to prevent such corruption, the tag waits
for a deterministic amount of time after the tag detects the
starting point of an excitation packet, which is 400µs in our
implementation. This is because the 802.11b packet header
is 384 bits and take 384µs to transmit it. In the end of a
tag transmission, the tag embeds an end of packet message
in the backscattered data to inform both the 802.11b trans-
mitter and the receiver that the backscatter communication
is done.

4. IMPLEMENTATION
We build a prototype of our system using commodity WiFi

transceivers and a customized backscatter tag. We describe
their implementation details below.

4.1 802.11b transceiver and tag hardware
802.11b transceiver: Our 802.11b receiver is a Macbook

Pro laptop, which has a WiFi card that runs the 802.11a/b/g-
/n/ac protocols. We use the sniffer tool embedded in the
Wireless Diagnostics application to set the desired channel
where we want to receive the backscattered signal. Then,
we use tcpdump to analyze the received WiFi packets and
extract the backscattered information.

We use an Intel 5300 WiFi card on an Intel NUC as the
standard 802.11b transmitter. It supports 802.11 a/b/g/n
data transmission. We use the firmware provided by [9] to
control the rate of 802.11b packets transmission.

Backscatter tag: We now describe the implementation
details of our backscatter tag. Figure 9 shows the diagram
of the key components of our tag. The clock source of our
system is a ring oscillator, which comprises odd number of
inverters and is able to provide a 30MHz clock for the rest
of the system. The 30MHz clock is divided into two paths

Excitation signal
coming from AP

SPDT

Shorted RF
terminals

Digital Data
(D0)

Frequency Shifter clock
generator

RF
splitter

SPDTMUX

0o 45o

. . .

Backscattered
tag signal

Digital delay line
(t1)

Digital delay line
(t0)

. . .

Modulation
Enable

(EN)

Figure 9: HitchHike tag hardware diagram.

where one is directly connected to a multiplexer and the
other goes through an inverter before being fed into the mul-
tiplexer. The reason we feed the clock on the second path
into an inverter comes from the fact that the tag should
modulate the 802.11b packets with 0o or 180o degree phase
shifting. The 30MHz clock on the first path is able to shift
the 802.11b signal by 30MHz with 0o degree phase offset.
The clock on the second path is also able to shift the 802.11b
signal by 30MHz. However, it introduces a 180o phase offset.

The state of the multiplexer is controlled by an Igloo Nano
AGLN250 FPGA in our implementation. When the FPGA
wants to transmit zero, it chooses the first path clock where
30MHz clock with 0o phase offset is used. Similarly, when
the FPGA wants to transmit one, it chooses the second path
clock where 30MHz clock with 180o phase offset is used.

The chosen clock is then again divided into two paths for
creating the single side-band backscatter. The signal on the
first path is connected to one RF switch without any delay.
The signal on the second path is connected to another RF
switch with a delay that is able to produce a 90o phase offset.
We implement this delay using inverters where 8.3ns delay
is introduced because the signal frequency is 30MHz. The
output of the second RF switch is passed through an RF
delay line that is able to produce a 45o phase offset from
the antenna to the RF switch. At the last stage, the signals
on the two paths are combined by the RF splitter before
backscattering out.

In our implementation, we choose ADG902 RF switch and
toggle it at 30MHz to move the backscattered signal away
from the incident 802.11b signal. We choose this RF switch
because of its low return loss. We use a Vector Network
Analyzer to empirically measure the return loss of this RF

0/1

RF switch

RF switch

r1(t)

r2(t)

pi/2

r(t)

logic

On-Off keying

On-Off keying

r1(t)

r2(t)

logic

signal in 90
0delay

signal out

splitter
couplerOn-Off keying

On-Off keying

r1(t)

r2(t)

logic

signal in

delaysplitter
pi/4

signal in

splitter -

+

envelope
detector

Figure 10: 802.11b analog envelop detector.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 3 4 5 6

D
el

ay
 (u

s)

Distance (m)

Comparator Delay
1bit 802.11b symbol

Figure 11: The delay between comparator signaling and
802.11b transmission.

switch. Only 3dB loss is observed, which suggests that we do
not lose a significant amount of RF power during reflection.

Open source HitchHike platform: Both software and
hardware of HitchHike platform will be available on Stanford
website under an academic license to ensure reproducibility
of results.

4.2 How to synchronize with 802.11b packets?
When the backscatter tag injects 1 bit of backscatter data

on top of 1 bit of 802.11b data, we need to address one prob-
lem — how should we synchronize the tag bits stream with
the 802.11b bits stream? and how does the synchronization
error impact the performance of decoding?

We achieve such synchronization by using an energy de-
tector at the tag side. Figure 10 shows the block diagram of
our energy detector. It takes the 2.4GHz wireless signal as
input and splits into two paths. The signal on one path is
directly connected to a NCS2200SQ2T2G comparator and
the signal on the other path is passed through a diode and
a small capacitor before being connected to the comparator.
Once the 802.11b transmitter starts transmission, the signal
on the first path will become high immediately. However,
the signal on the second path will remain low for a while.
Since there is a difference between the two inputs of the com-
parator, the comparator is able to identify that the 802.11b
transmission started.This comparator does not output jitter
signals during an 802.11b packet because an 802.11b packet
has a constant envelop in the time domain.

Figure 11 shows the delay between the comparator signal-
ing and the start of an 802.11b transmission. We measure
this delay across distance when an 802.11b transmitter sends
at 30dBm. At 1m, our synchronization circuit introduces a
0.6µs delay. This delay increases when the tag is further
away from the 802.11b transmitter because the tag receives
less energy at further distance. At 6m, we experience 1.1µs
delay. A natural question to ask is that how does this delay

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 5 10 15 20 25 30 35

C
or

ru
pt

ed
 d

at
a

(b
yt

es
)

Delay (us)

Comparator Delay

Figure 12: Corrupted backscatter data per packet due to
the delay of our synchronization circuit.

impact the backscatter decoding?
Figure 12 shows the number of corrupted data bits per

packet at the 802.11b receiver when we increase the delay
introduced by our synchronization circuit. We introduce this
artificial and controlled delay by sending 802.11b packets
via an SMBV100A signal generator, which allows us to use
a wire to inform the tag the starting point of an 802.11b
transmission with a deterministic delay. We observe that
when the delay is smaller than 8µs, zero bytes of data are
corrupted. However, when the delay is between 8µs and
12µs, 1 byte of data is corrupted. The number of corrupted
data becomes larger when the delay is larger. However, since
our empirically measured synchronization delay shown in
Figure 11 is smaller than 2µs, the delay introduced by the
synchronization circuit does not impact the performance of
our backscatter decoding at the 802.11b receiver.

5. EVALUATION
We describe the experimental evaluation of our system

to understand how our system performs in diverse deploy-
ments. Our experiments show the following:

• The HitchHike prototype achieves an uplink backscat-
ter range of 50m in line-of-sight scenarios, which is
twice as better compared to prior backscatter systems
such as Passive WiFi [20]. In non-line-of-sight (NLOS)
deployment, our prototype achieves a range of 16m
even when the backscatter signal has to pass through
two walls.

• Our system is able to achieve close to 300Kbps through-
put when the receiver is less than 34m from the tag in
LOS deployment. At farther distance and NLOS de-
ployment, our system is able to achieve an average of
222kbps and 50kbps throughput respectively.

• We also benchmark the operational regime of our sys-
tem and shows that backscatter decoding works even
when the tag is 6m away from the 802.11b transmitter.

• Finally we demonstrate that our low-power tag only
consumes power on the order of 33µW despite the fact
that it moves the backscattered signal into another
band. We also show that our system is able to co-exist
with existing WiFi infrastructure well.

5.1 HitchHike’s Performance
First, we investigate HitchHike’s range. We quantify per-

formance using three metrics: throughput, bit error rate

54m

32m

WiFi TX

Tag

WiFi RX

WiFi RX

WiFi TX
Tag

(a) LOS deployment

54m

32m

WiFi TX

Tag

WiFi RX

WiFi RX

WiFi TX
Tag

(b) NLOS deployment

Figure 13: Floor plan and experiment setup of our backscatter system in LOS and NLOS deployment.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (k

bp
s)

Distance (m)

15dBm
30dBm

(a) Througphut

10-3

10-2

10-1

100

 0 10 20 30 40 50 60

B
ER

Distance (m)

15dBm
30dBm

(b) BER

-90
-85
-80
-75
-70
-65
-60
-55

 0 10 20 30 40 50 60

R
SS

I (
dB

m
)

Distance (m)

15 dBm
30 dBm

(c) RSSI

Figure 14: Backscatter throughput, BER, and RSSI across distance in line-of-sight deployment where WiFi TX-to-tag distance
is 1m.

(BER), and received signal strength indicator (RSSI). Fig-
ure 13(a) and Figure 13(b) show the floor plan and the ex-
periment setup of our system in both LOS and NLOS de-
ployment. For the LOS deployment, all devices are deployed
in a hallway. For the NLOS deployment, the 802.11b trans-
mitter and the tag are deployed in a room while the 802.11b
receiver is deployed in the hallway, which is separated from
the tag by one or two walls depending on distance. We de-
ploy the tag 1m away from the 802.11b transmitter. Then,
we move the 802.11b receiver away from the tag and measure
the achieved throughput, BER and RSSI across distances.

5.1.1 Line-of-sight performance
Figure 14(a) shows the throughput of our backscatter sys-

tem with increasing range. As we can see, the maximal oper-
ational distance of our system is 54m, 1.5×∼2× longer than
the range reported by Passive WiFi [20] that leverages a sin-
gle tone using dedicated hardware as the carrier signal for
generating the backscattered 802.11b packets. Second, we
can achieve close to 300Kbps throughput when the 802.11b
receiver is 34m from the tag. Such throughput can meet
the requirement of many applications of wearables and In-
ternet of Things where sensor data are collected at a rate of
∼100kbps.

When we move the 802.11b receiver away from the tag,
backscatter throughput decreases because the backscattered
signal strength decreases as shown in Figure 14(c). When
the 802.11b receiver is more than 40m away from the tag,
the received backscatter signal strength is below -80dBm
and makes decoding harder. Figure 14(b) shows that bit
error rate increases from 10−2 to 10−1 at longer distances
and as a result, throughput decreases.

5.1.2 Non-line-of-sight Performance
Figure 15(a) shows the backscatter throughput in the NLOS

deployment. We find two observations. First, the maximum
communication distance achieved is 32m, longer than the
maximum distance reported by Passive WiFi [20]. Second,
we are able to achieve 100∼200kbps throughput when the
802.11b receiver is within 25m from the tag.

As expected, the throughput and range of our backscatter
system degrades compared with the LOS deployment. For
example, the maximum communication distance achieved
is 32m, much shorter than the 54m of the LOS deploy-
ment. Such performance degradation is caused by the lower
backscattered signal strength as shown in Figure 15(c). The
backscattered signal strength is -76dBm when the 802.11b
receiver is 1m away from the tag, which is 10dB lower than

 0
 50

 100
 150
 200
 250
 300
 350

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 (k

bp
s)

Distance (m)

(a) Througphut

10-3

10-2

10-1

100

 0 5 10 15 20 25 30 35

B
ER

Distance (m)

(b) BER

-94
-92
-90
-88
-86
-84
-82
-80
-78
-76

 0 5 10 15 20 25 30 35

R
SS

I (
dB

m
)

Distance (m)

(c) RSSI

Figure 15: Backscatter throughput, BER, and RSSI across distance in non-line-of-sight deployment where WiFi TX-to-tag
distance is 1m.

the LOS deployment because there is a wall between the tag
and the 802.11b receiver in the NLOS deployment. When
the distance between the tag and the 802.11b receiver in-
creases, the backscattered signal strength drops sharply. When
the 802.11b receiver is more than 10m away, the backscat-
tered signal strength is around -88dBm, close to the noise
floor. As a result, decoding the backscattered signal becomes
much harder.

5.1.3 Impact of WiFi Transmitter Power
We also evaluate the performance of our system when the

802.11b transmitter sends at different power levels. On the
2.4GHz unlicensed band, the maximum peak power allowed
by FCC is 30dBm. However, many WiFi transmitters choose
to send at a lower power level. Figure 14(a) also shows the
throughput of a tag when the 802.11b transmitter sends at
15dBm and 30dBm. For 15dBm transmission, we can see
the maximum range achieved is 42m and throughput de-
grades significantly when the 11b decoder is more than 16m
away. As expected, the 30dBm transmission does improve
the communication range to 54m and significantly reduce
the corresponding bit error rate.

5.1.4 Impact of Transmitter-Tag Distance
Since backscatter performance depends on both of the

802.11b TX-to-tag distance and the 802.11b RX-to-tag dis-
tance, we first fix the 802.11b TX-to-tag distance and mea-
sure the maximum 802.11b RX-to-tag distance where backscat-
ter decoding succeeds. Then, we change the 802.11b TX-to-
tag distance and do the measurement again. Figure 17 shows
the empirically measured communication range of our sys-
tem. Backscatter communication still succeeds when the tag
is 50m away from the 802.11b receiver or 6m away from the
802.11b transmitter. The backscatter tag cannot operate at
a long distance from the 802.11b transmitter because the
tag cannot identify the excitation packet sent by the trans-
mitter. In addition, the tag cannot be far away from both
of the 802.11b transmitter and receiver either. For exam-
ple, when the tag is 6m away from the 802.11b transmitter,
the maximum distance between the 802.11b receiver and the
tag is 8m. We also calculate the theoretical communication
range of our system using the Friis model and the backscat-
tered signal strength measured when the tag is 50m away
from the 802.11b transmitter. As shown, the theoretical
curve matches the empirically measured curve well except
that the empirically measured communication distance is a
bit shorter.

5.1.5 Impact of Synchronization Signal Delay
One factor that potentially impacts the performance of

our system is the time-domain delay between the tag bits
stream and the 802.11b bits stream. In this experiment,
we use an SMBV100A signal generator to transmit 802.11b
packets. This signal generator is able to output a signal
that indicates the start of an 802.11b packet. We use a wire
to feed this signal to the tag and inform the tag when the
802.11b packet transmission starts. More importantly, we
can introduce a deterministic delay on this signal to emulate
the time-domain jitters experienced by the tag.

Figure 16(a), 16(b), and 16(c) show the throughput, BER,
and RSSI of the backscattered signal when we introduce
0.6µs to 32µs delay. We can see the backscatter throughput
does decrease a bit when the delay value increases. However,
the throughput degradation is not significant. The reason
is that only the first several bits of a backscatter packet are
corrupted. The rest of the backscatter packet can still be
decoded correctly. As a result, throughput degradation is
not significant. In addition, as we show in section 3, the
empirically measured delay is less than 2µs across distances.
Therefore, the throughput degradation is even smaller. Fig-
ure 16(b) and Figure 16(c) also show similar conclusion
where we can observe similar bit error rate and received
backscattered signal strength when the delay value changes
from 0.6µs to 32µs.

5.1.6 Impact of Packet Checksum
When a HitchHike tag converts an incoming WiFi packet

into a backscattered packet, it does not know the content
of the WiFi packet. Therefore, although the backscattered
packet is a valid WiFi packet on the physical layer, its packet
checksum could be wrong. Can we receive a packet when
its checksum is wrong? The answer depends on the WiFi
receiver hardware. On some receivers, such as Macbook Pro,
we are able to receive and decode packets with bad checksum
as long as we configure these receivers into monitor mode.
However, some WiFi receivers do not provide this capability
and they drop packets with bad checksum in hardware. For
those radios, they cannot be used to decode the backscatter
packets generated by a HitchHike tag.

5.2 Tag Power Consumption
Figure 18 shows a breakdown of the power consumed by

different components of our tag, which is obtained by us-
ing a 45nm power analysis tool. The clock module, which
produces a 30MHz clock for the rest of the system, actually
only consumes 4µW of power. The data modulator, which
embeds backscattered bits on top of the 30MHz clock, con-

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 (M

bp
s)

Synchronization Signal Delay (us)

(a) Througphut

10-3

10-2

10-1

100

 0 5 10 15 20 25 30 35

B
ER

Synchronization Signal Delay (us)

(b) BER

-95
-90
-85
-80
-75
-70
-65
-60
-55

 0 5 10 15 20 25 30 35

R
SS

I (
dB

m
)

Synchronization Signal Delay (us)

(c) RSSI

Figure 16: Benchmark backscatter throughput, BER, and RSSI when the synchronization signal is delayed.

 0
 10
 20
 30
 40
 50

 1 2 3 4 5 6

Ta
g-

R
X

D
is

ta
nc

e
(m

)

TX-Tag Distance (m)

Empirical
Theoretical

Figure 17: Communication range of our system.

 0

 5

 10

 15

 20

 25

 30

Clock Modulator Single Side-band

Po
w

er
 (u

W
)

Figure 18: HitchHike tag power consumption.

sumes 1µW of power. The module which is responsible for
generating the single side-band backscatter consumes 28µW
of power. The total power consumed by our system is only
33µW, comparable with the 59.2µW consumed by Passive
WiFi [20]. In addition, many energy harvesting system, such
as small solar panel, are able to provide continuous power
above 33µW even in indoor environment. Therefore, our tag
has the potential of being deployed without batteries.

5.3 Co-existence with WiFi Networks
Finally, we investigate how well backscatter communica-

tion co-exists with concurrent WiFi communication. In this
experiment, we deploy a backscatter tag 4m away from an
802.11b transmitter. The 802.11b transmitter is 3m away
from a laptop, which transmits continuous WiFi packets to
another laptop that is 5m away from the the 802.11b trans-
mitter. The 802.11b transmitter sends 802.11b packets on
channel 7 (2.442GHz), the tag shifts the backscattered signal
by 30MHz to channel 13 (2.472GHz), and we run the WiFi
stream between the two laptops on channel 1 (2.412GHz).

 0

 0.2

 0.4

 0.6

 0.8

 1

 22 24 26 28 30 32 34 36 38

C
D

F

Throughput (Mbps)

Backscatter Off
Backscatter On

Figure 19: WiFi throughput when backscatter is present and
absent.

We look at the throughput of the WiFi transmission be-
tween the two laptops as well as our backscatter system,
and understand how they impact each other.

5.3.1 How does backscatter impact WiFi?
Figure 19 shows the WiFi throughput between the two

laptops when backscatter is present and when it is absent.
When we turn off the backscatter transmission, the median
WiFi throughput achieved is 33.9Mbps. The WiFi through-
put varies between 22Mbps and 38Mbps because of human
movement nearby. When backscatter is present, the median
WiFi throughput drops a bit to 32Mbps, 5% smaller. As a
result, backscatter does not cause severe interference to the
WiFi streams. The reason is that the backscattered signal
does not have an overlapping spectrum with the active WiFi
transmission. Further, the backscattered signal strength is
usually below -70dBm, much lower than the signal strength
of the active WiFi transmission. As a result, backscatter
communication does not severely impact active WiFi trans-
mission.

5.3.2 How does WiFi impact backscatter?
We now turn to look at the other case — how does ac-

tive WiFi transmission between the two laptops impact the
throughput of backscatter? Figure 20 shows the backscatter
throughput when the WiFi stream between the two laptops
is present and absent. When we turn off the WiFi stream
on the laptops, the median backscatter throughput achieved
is 236Kbps. When the WiFi stream is present, the median
backscatter throughput drops to 220Kbps, 7% smaller. The
impact is small because the backscattered signal is 60MHz
away from the WiFi stream on the frequency domain and
any interference leaking in the frequency domain is quite
small.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

C
D

F

Throughput (Mbps)

WiFi Off
WiFi On

Figure 20: Backscatter throughput when WiFi is present
and absent.

6. RELATED WORK
Our system is the first one that enables backscatter com-

munication between two commodity 802.11b WiFi radios
without any hardware modification. Our work is inspired
by recent progress on backscatter systems, interference can-
cellation and network coding. Let us discuss related work
and highlight our differences from the previous work.

Backscatter systems: In recent years, we have seen a
significant throughput and communication range improve-
ment of backscatter systems [30, 7, 1, 8, 10, 11, 12, 13,
19, 25, 29, 26, 28, 33, 23, 27, 31, 34, 32]. [21] leverages
TV signals and enables backscatter communication between
two battery-less devices. [18] looks at the opportunity of
backscattering information on top of a WiFi signal. [2]
leverages full-duplex technique to enable backscatter com-
munication with a WiFi AP. [6] emulates BLE transmission
by backscattering a BLE baseband signal on top of a single
tone. [20] leverages similar ideas by emulating an 802.11b
transmission on top of a single tone signal. Inter-Technology
Backscatter [14] enables backscatter communication from a
commercial Bluetooth radio to a commercial WiFi radio.
However, none of these previous work enables backscatter
communication between two 802.11b WiFi radios without
any hardware modification or deploying a specific single tone
emitter. Since WiFi radios and access points are ubiquitous
and have been integrated in almost every laptop, smart-
phone, etc. More importantly, all these WiFi radios and
access points are backward compatible in terms of being
able to transmit and decode 802.11b packets even though
they primarily run 802.11g/n/ac protocols. Therefore, the
capability of doing backscatter communication between two
802.11b radios will enable a rich set of applications in the
wearables and Internet of Things fields.

Interference cancellation: One key problem that we
have to address is the strong self-interference experienced
by a backscatter system when backscattering between two
commercial 802.11b radios. [15] [5] [3] [4] [22] develop a set of
full-duplex cancellation techniques to reduce self-interference
in WiFi and MIMO systems. However, we cannot use these
techniques in our system for two reasons. First, we need to
do hardware modification on existing radios, which is not
preferred. Second, more importantly, full duplex techniques
cannot be used when the 802.11b transmitter and receiver
are physically separated and mobile. Our system addresses
this problem by moving the backscattered signal away from
the incident signal in the frequency domain. In other words,
we allocate another clean channel for backscatter communi-

cation.
Network coding: The WiFi bits stream XOR used by

our system for improving spectrum efficiency is inspired by
previous work on network coding. [16] and [17] look at the
opportunity of mixing multiple data streams using network
coding to improve the wireless network performance. Our
system takes a similar idea by XOR-ing the original 802.11b
stream with the backscattered 802.11b stream before feeding
it into the backscatter decoder. This operation enables the
802.11b transmitter to send arbitrary data, which is differ-
ent from previous systems [6] [20] where one of the 2.4GHz
channel is wasted due to transmitting a single tone.

7. CONCLUSION
HitchHike is the first backscatter communication system

that can be deployed completely using commodity WiFi in-
frastructure. Further, it is spectrally efficient, unlike prior
solutions it does not waste precious unlicensed spectrum.
We plan to investigate how to extend HitchHike to use other
infrastructure such as GSM, 3G and LTE as well as other
flavors of WiFi such as 802.11g/n/ac.

8. ACKNOWLEDGEMENTS
We thank the shepherd Joshua R. Smith, the anonymous

reviewers, Eyal Cidon, and Manikanta Kotaru for their in-
sightful comments.

9. REFERENCES
[1] O. Abari, D. Vasisht, D. Katabi, and

A. Chandrakasan. Caraoke: An e-toll transponder
network for smart cities. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 297–310, New
York, NY, USA, 2015. ACM.

[2] D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti.
Backfi: High throughput wifi backscatter. In
Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages
283–296. ACM, 2015.

[3] D. Bharadia and S. Katti. Fastforward: fast and
constructive full duplex relays. In Proceedings of the
2014 ACM conference on SIGCOMM, pages 199–210.
ACM, 2014.

[4] D. Bharadia and S. Katti. Full duplex mimo radios. In
11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages
359–372, Seattle, WA, Apr. 2014. USENIX
Association.

[5] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and
S. Katti. Achieving single channel, full duplex wireless
communication. In Proceedings of the sixteenth annual
international conference on Mobile computing and
networking, pages 1–12. ACM, 2010.

[6] J. F. Ensworth and M. S. Reynolds. Every smart
phone is a backscatter reader: Modulated backscatter
compatibility with bluetooth 4.0 low energy (ble)
devices. In RFID (RFID), 2015 IEEE International
Conference on, pages 78–85. IEEE, 2015.

[7] S. Gollakota, M. S. Reynolds, J. R. Smith, and D. J.
Wetherall. The emergence of rf-powered computing.
Computer, 47(1):32–39, 2014.

[8] J. Gummeson, P. Zhang, and D. Ganesan. Flit: a bulk
transmission protocol for rfid-scale sensors. In
Proceedings of the 10th international conference on
Mobile systems, applications, and services, pages
71–84. ACM, 2012.

[9] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Tool
release: gathering 802.11 n traces with channel state
information. ACM SIGCOMM Computer
Communication Review, 41(1):53–53, 2011.

[10] H. Hassanieh, J. Wang, D. Katabi, and T. Kohno.
Securing rfids by randomizing the modulation and
channel. NSDI, 2015.

[11] P. Hu, P. Zhang, and D. Ganesan. Leveraging
interleaved signal edges for concurrent backscatter. In
Proceedings of the 1st ACM workshop on Hot topics in
wireless, pages 13–18. ACM, 2014.

[12] P. Hu, P. Zhang, and D. Ganesan. Laissez-faire: Fully
asymmetric backscatter communication. In
Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages
255–267. ACM, 2015.

[13] P. Hu, P. Zhang, M. Rostami, and D. Ganesan.
Braidio: An integrated active-passive radio for mobile
devices with asymmetric energy budgets. In
Proceedings of the 2016 conference on ACM
SIGCOMM 2016 Conference, pages 384–397. ACM,
2016.

[14] V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and
J. Smith. Inter-technology backscatter: Towards
internet connectivity for implanted devices. In
Proceedings of the 2016 conference on ACM
SIGCOMM 2016 Conference, pages 356–369. ACM,
2016.

[15] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth,
K. Srinivasan, P. Levis, S. Katti, and P. Sinha.
Practical, real-time, full duplex wireless. In
Proceedings of the 17th annual international
conference on Mobile computing and networking, pages
301–312. ACM, 2011.

[16] S. Katti, S. Gollakota, and D. Katabi. Embracing
wireless interference: analog network coding. In ACM
SIGCOMM Computer Communication Review,
volume 37, pages 397–408. ACM, 2007.

[17] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard,
and J. Crowcroft. Xors in the air: practical wireless
network coding. IEEE/ACM Transactions on
Networking (ToN), 16(3):497–510, 2008.

[18] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and
D. Wetherall. Wi-fi backscatter: internet connectivity
for rf-powered devices. In Proceedings of the 2014
ACM conference on SIGCOMM, pages 607–618.
ACM, 2014.

[19] B. Kellogg, V. Talla, and S. Gollakota. Bringing
gesture recognition to all devices. In Usenix NSDI,
volume 14, 2014.

[20] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith.
Passive wi-fi: Bringing low power to wi-fi
transmissions.

[21] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall,
and J. R. Smith. Ambient backscatter: wireless
communication out of thin air. In ACM SIGCOMM
Computer Communication Review, volume 43, pages
39–50. ACM, 2013.

[22] V. Liu, V. Talla, and S. Gollakota. Enabling
instantaneous feedback with full-duplex backscatter.
In Proceedings of the 20th annual international
conference on Mobile computing and networking, pages

67–78. ACM, 2014.
[23] A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith.

Turbocharging ambient backscatter communication. In
Proceedings of the 2014 ACM conference on
SIGCOMM, pages 619–630. ACM, 2014.

[24] S. Patel, H. Park, P. Bonato, L. Chan, and
M. Rodgers. A review of wearable sensors and systems
with application in rehabilitation. Journal of
neuroengineering and rehabilitation, 9(1):1, 2012.

[25] V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi,
S. Gollakota, and J. R. Smith. Powering the next
billion devices with wi-fi. arXiv preprint
arXiv:1505.06815, 2015.

[26] J. Wang, F. Adib, R. Knepper, D. Katabi, and
D. Rus. Rf-compass: robot object manipulation using
rfids. In Proceedings of the 19th annual international
conference on Mobile computing & networking, pages
3–14. ACM, 2013.

[27] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk.
Efficient and reliable low-power backscatter networks.
In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures,
and protocols for computer communication, pages
61–72. ACM, 2012.

[28] J. Wang and D. Katabi. Dude, where’s my card?: Rfid
positioning that works with multipath and non-line of
sight. In ACM SIGCOMM Computer Communication
Review, volume 43, pages 51–62. ACM, 2013.

[29] J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: virtual
touch screen in the air using rf signals. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages
235–246. ACM, 2014.

[30] P. ZHANG, D. Bharadia, K. Joshi, and S. Katti.
Enabling backscatter communication among
commodity wifi radios. In Proceedings of the 2016
Conference on ACM SIGCOMM 2016 Conference,
SIGCOMM ’16, pages 611–612, New York, NY, USA,
2016. ACM.

[31] P. Zhang and D. Ganesan. Enabling bit-by-bit
backscatter communication in severe energy
harvesting environments. NSDI, Berkeley, CA, 2014.

[32] P. Zhang, D. Ganesan, and B. Lu. Quarkos: Pushing
the operating limits of micro-powered sensors. In
Proceedings of the 14th USENIX conference on Hot
Topics in Operating Systems, pages 7–7. USENIX
Association, 2013.

[33] P. Zhang, J. Gummeson, and D. Ganesan. Blink: A
high throughput link layer for backscatter
communication. In Proceedings of the 10th
international conference on Mobile systems,
applications, and services, pages 99–112. ACM, 2012.

[34] P. Zhang, P. Hu, V. Pasikanti, and D. Ganesan.
Ekhonet: high speed ultra low-power backscatter for
next generation sensors. In Proceedings of the 20th
annual international conference on Mobile computing
and networking, pages 557–568. ACM, 2014.

[35] P. Zhang, M. Rostami, P. Hu, and D. Ganesan.
Enabling practical backscatter communication for
on-body sensors. In Proceedings of the 2016 conference
on ACM SIGCOMM 2016 Conference, pages 370–383.
ACM, 2016.

